• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Расчет поля между эквипотенциальными поверхностями в неоднородной среде в отсутствие объемного заряда

М.И. Векслер, Г.Г. Зегря

Это типичная ситуация в конденсаторе. Для ее рассмотрения используется уравнение Пуассона с ρ = 0, которое интегрируется с учетом условий φ(x1) = φ1, φ(x2) = φ2 (для плоскостного случая) или φ(r1) = φ1, φ(r2) = φ2 (сфера, цилиндр). Рассмотрим далее случай плоскости.

Далее можно дифференцированием по x найти поле Ex и Dx:

Следующий шаг - нахождение поляризованности и ее дивергенции, то есть связанного заряда ρ':

В точках разрыва ε(x) (на стыке двух диэлектриков) производная ε'(x) обращается в бесконечность, формула для ρ' cтановится неприменимой и надо искать поверхностный связанный заряд:

Обязательно проверяются условия на границах (в данном случае x1, x2) на наличие поверхностного связанного заряда:

В сферическом и цилиндрическом случаях надо правильно писать div в соответствующей системе координат. Выражения для φ(r) принимают вид:

φ(r)

 =

φ(r)

 =

после чего Er(r) и связанные заряды находятся аналогично тому, как это было сделано выше для плоскостного (декартового) случая.

Задача. Получить выражения для φ(r), Er(r), ρ ', σ ' в случае цилиндрической и сферической симметрии, если заданы зависимость ε(r), а также потенциалы граничных поверхностей φ(R1(2)) = φ1(2). ρ = 0.

Указание: Для промежуточной проверки использовать вышеприведенные выражения для потенциала.

Задача. Пространство между обкладками плоского конденсатора шириной d заполнено неоднородным диэлектриком c проницаемостью ε(x) = 1+α x. Найти φ(x), Ex(x), ρ ', σ ' на обкладках.

Решение: Будем считать, что конденсатор занимает область координат x = 0... d, причем потенциал одной обкладки (x = 0) равен φ1 = 0, а другой φ2 = U. Тогда зависимость потенциала от координаты находится как

после чего находим поле Ex(x) дифференцированием:

и далее получаем поляризованность Px:

Взяв дивергенцию, получаем объемный связанный заряд:

и еще проверяем условия на обкладках на наличие поверхностного заряда σ ':

σ '|x = 0

 =

–Px|x = 0+ = 0

σ '|x = d

 =

Как и следовало ожидать, σ '|x = 0 = 0, поскольку у обкладки x = 0 диэлектрическая проницаемость равнa единице. Если U>0, то σ '|x = d<0, что тоже естественно: у обкладки x = d должен концентрироваться отрицательный связанный заряд. Для проверки найдем суммарный связанный заряд на единицу площали обкладки конденсатора - этот заряд должен оказаться равным нулю. Действительно,

 =

 =

 =

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.

Для подготовки данной работы были использованы материалы с сайта http://edu.ioffe.ru/r

Дата добавления: 20.04.2011

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.