• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Основные определения и теоремы к зачету по функциональному анализу

Основные определения и теоремы к зачету по функциональному анализу

Определение:  Элемент наилучшего приближения – L – линейное  многообразие, плотное в E. "e "xÎE $u: ║x-u║<e

Теорема:  Для любого элемента нормированного пространства существует хотя бы один элемент наилучшего приближения из конечномерного подпространства.

Теорема:  Для элемента из строго нормированного конечномерного пространства существует единственный элемент наилучшего приближения из конечномерного подпространства.

Теорема:  Рисса о существовании почти ортогонального элемента. E-НП LÌE, "eÎ(0,1) $zeÎE\L ║ze║=1 r(ze,L)>1-e

Определение:  Полное нормированное пространство- любая фундаментальная последовательность сходиться.

Теорема:  О пополнении нормированного пространства. Любое нормированное пространство можно считать линейным многообразием, плотным в некотором полном нормированном пространстве.

Определение:  Гильбертово пространство – нормированное пространство, полное в норме, порожденной скалярным произведением.

Теорема:  Для любого элемента гильбертова пространства существует единственный элемент наилучшего приближения в конечномерном подпространстве гильбертова пространства.

Определение:  L плотное в E, если "xÎE $uÎL: ║x-u║<e

Теорема:  Чтобы L было плотно в H ó ортогональное дополнение к L состояло только из нулевого элемента. 

Определение:  Сепарабельное – нормированное пространство, содержащее некоторое счетное плотное в нем множество.

Определение:  Ортогональное дополнение – множество элементов ортогональных к элементам данного пространства.

Определение:  Линейный оператор – отображение, для которого A(ax+by)=aAx+bAy

Определение:  Непрерывный оператор – AxàAx0 при xà x0

Определение: L(X,Y) – пространство линейных операторов

Теорема:  Пусть X и Y – полные НП и A – непрерывен на некотором подпространстве пространства X, тогда он непрерывен на всем  X.

Определение:  Ограниченный оператор - "║x║≤1 $с: ║Ax║≤c

Теорема:  A – ограниченный ó "xÎX ║Ax║≤c║x║

Теорема:  Для того чтобы А был непрерывен ó чтобы он была ограничен

Теорема: {An} равномерно ограничена è {An}- ограничена.

Теорема:  {Anx} – ограниченно ó {║An║}- ограничена.

Определение:  Сильная (равномерная) сходимость ║An-A║à0,  nà¥, обозначают AnàA

Определение:  Слабая сходимость - "xÎX ║(An-A)x║Yà0, nà¥

Теорема:  Для того, чтобы имела место сильная сходимость ó {An} сходилась равномерно на замкнутом шаре радиуса 1

Теорема:  Банаха-Штенгауза AnàA nॠслабо è 1) {║An║}- ограничена 2) AnàA, x’ÌX, x’=x

Теорема: Хана Банаха. A:D(A)àY, D(A)ÌX è $ A’:XàY 1) A’x=Ax, xÎD(A)  2) ║A’║=║A║

Определение:  Равномерная ограниченность - $a "x: ║x(t)║≤a

Определение:  Равностепенная непрерывность "t1,t2 $d: ║x(t1)-x(t2)║<e

Теорема: L(X,Y) полное, если Y – полное.

Определение:  Ядро – {xÎX | Ax=0}

Определение:  Сопряженное пространство – пространство функционалов X*:=L(X,E)

Определение:  Сопряженный оператор A*: Y*àX*

Теорема:  Банаха A:XàY и X,Y- полные нормированные пространства. Тогда $ A-1 и ограничен.

Определение:  Оператор А – обратимый

Определение:  Оператор А- непрерывнообратимый если 1) A- обратим, 2) R(A)=Y, 3) A-1-ограничен.

Теорема:  A-1 $ и ограничен ó $m>0 "xÎX ║Ax║≥m║x║

Теорема:  Рисса о представлении линейного функционала в гильбертовом пространстве. Пусть f:XàY – линейный ограниченный функционал è $! yÎH "xÎH f(x)=(x,y)

Определение:  MÌX называется бикомпактным, если из любой ограниченной последовательности можно выделить сходящуюся к элементам этого же множества последовательность.

Определение:  Множество называется компактным, если любая ограниченная последовательность элементов содержит фундаментальную подпоследовательность.

Теорема:  Хаусдорфа. MÌX компактно ó "e>0 $ конечная e-сеть

Теорема:  Арцела.  MÌC[a,b] компактно ó все элементы множества равномерно ограничены и равностепенно непрерывны.

Определение:  Компактный (вполне непрерывный) оператор – замкнутый шар пространства X переводит в замкнутый шар пространства Y.

Определение:  s(X,Y) – подпространство компактных операторов

Теорема:  Шаудера. AÎs(X,Y) ó A*Îs(X*,Y*)

Линейные нормированные пространства

  • Пространства векторов

              сферическая норма

                          кубическая норма

                                        ромбическая норма

                        p>1

  • Пространства последовательностей          

                                                   p>1

          или             пространство ограниченных последовательностей

                     пространство последовательностей, сходящихся к нулю

                       пространство сходящихся последовательностей

  • Пространства функций

   пространство непрерывных на  функций

              

           пространство k раз непрерывно дифференцируемых на  функций

              

£p[a,b]   пространство функций, интегрируемых в степени p (не Гильбертово)

 - пополнение £p[a,b] (Гильбертово)

                             

Неравенство Гёльдера p,q>0

Неравенство Минковского    

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.ed.vseved.ru/

Дата добавления: 04.03.2003

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.