Поиск по рефератам и авторским статьям

Функция Римана

Функция Римана на промежутке от 0 до 1

Эта функция имеет и много других названий: функция Томе (примеч. Carl Johannes Thomae (1840 – 1921) — немецкий математик), модифицированная функция Дирихле, поп-корн (popcorn) функция, функция дождевых капель (raindrop), функция счетных облаков (countable cloud), функция линейки (ruler) или Звезды над Вавилоном (Stars over Babylon).

Функция Римана является простейшим примером функции, которая непрерывна во всех иррациональных точках и разрывна во всех рациональных точках. Эта вещественнозначная функция одной переменной определяется так:

(здесь дробь несократима).

Докажем, что функция Римана непрерывна во всех иррациональных точках. Действительно, для данного иррационального числа и произвольного рассмотрим множество

.

Если , то — рациональное число вида , где , дробь несократима и . Из ограничения на следует, что пересечение множества и промежутка состоит из конечного числа точек. Таким образом, мы можем выбрать окрестность точки так, чтобы в ней не содержалась ни одна точка множества . А если , то . Отсюда следует доказываемое.

Теперь докажем, что функция Римана разрывна во всех рациональных точках. Действительно, существует хотя бы одно иррациональное число сколь угодно близко к любому рациональному числу. Тем самым, мы можем выбрать последовательность иррациональных чисел, стремящуюся к данному рациональному числу. Тогда предел соответствующих значения функции (для членов данной последовательности) будет равен нулю, что отличается от значения функции и данной точке.

Интересно, что функции, непрерывной во всех рациональных точках и разрывной во всех иррациональных точках, не существует.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://hijos.ru/

Дата добавления: 29.05.2013


]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.
При полном или частичном использовании редакционных материалов активная, индексируемая гиперссылка на km.ru обязательна!
Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.
Карта сайта
Если Вы хотите дать нам совет, как улучшить сайт, это можно сделать здесь.
Организации, запрещенные на территории Российской Федерации