• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Кольцевой орбитальный резонанс

Кольцевой орбитальный резонанс

Кирилл Бутусов

В 1978 г. нами была опубликована работа «Золотое сечение в Солнечной системе» [1], где было показано, что в Солнечной системе наблюдается явление резонанса волн биений, приводящее к тому, что периоды и частоты обращений планет образуют геометрическую прогрессию со знаменателями Ф = 1,6180339 и Ф = 2,6180339, хорошо отображаемые числовыми рядами: Фибоначчи (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987...) и Люка (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843...), см. табл. 1, где n – числа Люка и Фибоначчи, а δ% – отклонение от резонансного значения nT в %.

Таблица 1

Тело

Т, лет

n

nT, лет

δ%

Ме

0,24085

377

90,800

1,98

В

0,61521

144

88,590

0,50

З

1,00000

89

89,000

0,03

Ма

1,88089

47

88,401

0,71

С

29,4577

3

88,373

0,74

 

 

 

89,033

0,79

Ц

4,605

18

82,893

0,10

Ю

11,862

7

83,035

0,06

У

84,015

1

84,015

1,24

Н

164,78

1/2

82,394

0,71

П

247,69

1/3

82,565

0,50

 

 

 

82,980

0,52

Однако, кроме описанных в статье случаев проявления «золотого сечения» в Солнечной системе, нам удалось выявить ещё ряд новых интересных примеров такого же рода. В частности, мы обнаружили, что величины, обратные эксцентриситетам планетных орбит также близки к числам Люка и Фибоначчи (см. табл. 2, где e – эксцентриситет орбиты, а n – число Люка или Фибоначчи).

Таблица 2

Тело

1/e

n

1/ne

δ%

П

4,021

4

1,0054

0,44

Ме

4,863

5

0,9726

2,91

Ма

10,711

11

0,9737

2,80

Ц

13,157

13

1,0121

1,10

С

17,946

18

0,9970

0,40

Ю

20,652

21

0,9834

1,79

У

21,195

21

1,0093

0,82

З

59,772

55

1,0867

8,56

Н

116,686

123

0,9486

5,52

В

147,058

144

1,0212

2,01

 

 

 

1,0010

2,63

Так как орбиты планет эллиптичны и постепенно прецессируют, то каждая из них занимает кольцевую область между двумя круговыми орбитами с радиусами:

rπ = (1 – e)a

(1)

rα = (1 + e)a

(2)

где rπ – радиус орбиты в перигелии,

rα – радиус орбиты в афелии,

a – большая полуось орбиты.

Этим круговым орбитам соответствуют свои периоды, а интервал периодов может быть найден по следующей формуле:

(3)

где T – период обращения планеты, а ΔT – будет шириной орбиты, выраженной в терминах периодов. Назовем эту величину «периодом ширины орбиты». При этом оказалось, что «период ширины орбиты» связан с перодом обращения планеты, расположенной через одну орбиту ближе к Солнцу, следующим соотношением:

kΔTn = Tn–2 ,

(4)

где k – целое число, чаще всего, близкое к единице, т.е. имеет место своеобразный резонанс, названный нами «кольцевым резонансом» (см. табл. 3).

Таблица 3а

Тело

ΔT, лет

k

kΔTn, лет

В

0,0125

5

0,0627

З

0,0501

5

0,2509

М

0,5266

1

0,5266

Ц

1,0497

1

1,0497

Ю

1,7228

1

1,7228

С

4,9235

1

4,9235

У

11,890

1

11,890

Н

4,237

7

29,659

П

184,28

0,5

92,140

Таблица 3b

Teло

T, лет

kΔTn / kΔTn–2

δ%

k

kΔTn / kΔTn–2

δ%

Сл

0,0694

0,903

10,0

11/2

0,993

0,61

Ме

0,2408

1,041

4,8

24/5

1,000

0,07

В

0,6152

0,855

16,0

7/6

0,998

0,08

З

1,0000

1,049

5,6

20/21

0,999

0,02

Ма

1,8808

0,915

8,4

12/11

0,999

0,02

Ц

4,6052

1,069

7,6

14/15

0,997

0,16

Ю

11,862

1,002

0,8

1/1

1,002

0,28

Ст

29,457

1,006

1,3

7/1

1,006

0,73

У

84,015

1,096

10,3

5/11

0,997

0,24

 

 

0,993

7,2

 

0,999

0,24

Как видно из таблицы, при грубой подборке коэфициента k он чаще всего принимает значение 1 и даёт отклонение от резонансности, равное 7,2%, а при более тонкой подборке коэфициента, когда он не целочислен, но равен отношению небольших чисел, это отклонение имеет величину только 0,24%. Учитывая, что на самом деле мгновенный период обращения планеты меняется в широких пределах, можно считать, что резонанс всегда соблюдается даже при грубой подборке k. Как оказалось, экваториальный период вращения Солнца и все «периоды ширины орбит» планет земной группы имеют между собою общий резонанс. Для планет, внешних по отношению к Земной орбите также имеет место общий для них резонанс. Причём средние отклонения от резонансности для обеих групп планет не превышают 0,55%. Период общего резонанса для внешних планет превосходит аналогичный период для земной группы планет в 28 раз (см. табл. 4).

Таблица 4

Тело

ΔT

n

ΔT / n

δ%

В

0,0125

2

0,00627

0,19

З

0,0501

8

0,00627

0.16

Сл

0,0694

11

0,00631

0,86

Ме

0,1483

24

0,00618

1,35

Ма

0,5266

84

0,00627

0,10

 

 

 

0,00626

0,53

Ма

0,5266

3

0,17553

0,30

Ц

1,0497

6

0,17495

0,02

Ю

1,7228

10

0,17228

1,58

Н

4,2370

24

0,17654

0,88

Ст

4,9235

28

0,17584

0,48

У

11,890

68

0,17485

0,08

 

 

 

0,17500

0,55

Если рассмотреть ширину орбиты в терминах частот обращений планет, то мы получим «частоту ширины орбиты». Как выяснилось, эти величины, нормированные на «частоту ширины орбиты» Нептуна, образуют числовые ряды, близкие к числам Люка и Фибоначчи (см. табл. 5) со средним отклонением от резонансности меньше 3%.

Таблица 5

Тело

Δν, год–1

Δν / ΔνН

n

Δν / nΔνН

δ%

Н

0,000156

1,0000

1

1,0000

1,62

У

0,001690

10,8346

11

0,98496

3,17

П

0,003305

21,1871

21

1,00890

0,72

С

0,057000

36,5384

34

1,07465

5,75

Ю

0,012286

78,7564

76

1,03626

1,97

В

0,033516

212,564

199

1,06816

5,11

З

0,050200

321,794

322

0,99936

1,68

Ц

0,049938

320,051

322

0,99394

2,23

Ма

0,150818

966,782

987

0,97951

3,69

 

 

 

 

1,01619

2,88

Мы рассматривали до сих пор интервалы периодов и частот, определяемых через радиусы круговых орбит, ограничивающих эллипсы орбит. Однако, интересно рассмотреть разности мгновенных периодов обращения планет в афелиях и перигелиях орбит т.е. интервал, в пределах которого меняется мгновенный период при движении планеты по орбите. Назовём этот интервал «девиацией периода» Расчёт её будем вести по формуле:

(5)

При этом оказалось, что наблюдается резонанс между «девиацией периода» планеты и периодом соседней планеты, расположенной ближе к Солнцу:

kΔT *n = T *n–1

(6)

См. табл. 6, где значки π, 0, α – определяют значения мгновенных периодов в перигелии, на среднем расстоянии и в афелии. Мы видим, что чаще всего наблюдается k = 2. Среднее отклонение от резонанса равно 1,75%.

Таблица 6

Тело

ΔTn*

k

k ΔTn*

Тело

T*n–1

kΔT*n / ΔT*n–1

δ%

Ме

0,2024

1/3

0,0674

Сле

0,0694

0,97099

2,58

В

0,0167

9

0,1505

Меπ

0,1553

0,96968

2,72

З

0,0669

9

0,6023

Вπ

0,6068

0,99253

0,35

Ма

0,5442

2

1,0884

Зα

1,0338

1,05279

5,69

Ц

1,4040

4/3

1,8720

Ма0

1,8808

0,99528

0,08

Ю

2,3000

2

4,6000

Ц0

4,6052

0,99888

0,28

Ст

6,5757

2

13,1514

Юα

13,0539

1,00746

1,14

У

15,8730

2

31,7460

Сα

32,8829

0,96542

3,17

Н

5,6494

15

84,7412

У0

84,0152

1,00864

1,26

П

254,336

7/11

161,850

Нπ

161,981

0,99919

0,31

 

 

 

 

 

 

0,99608

1,75

На самом деле, учитывая, что изменение мгновенного периода происходит в широких пределах, мы можем считать, что резонанс всегда соблюдается гораздо точнее.

Наконец, рассмотрим соотношения экстремальных значений мгновенных периодов на соседних орбитах в ближайших апсидах. Например, отношение мгновенного периода в афелии орбиты к такому же периоду, но уже в перигелии последующей орбиты, расположенной дальше от Солнца (см. табл. 7, где T1* – мгновенный период в афелии орбиты, а T2* – мгновенный период в перигелии последующей). Исключение составляют только Меркурий,где вместо перигелийных и афелийных периодов взяты средние периоды и Венера, где вместо афелийного периода взят средний период. Резонансный коэфициент равен отношению небольших чисел, на 85% состоящих из чисел Люка (2, 3, 4, 7, 11).

Анализ таблицы показывает, что эти соотношения близки к резонансным со средним отклонением от резонансности 0,53%.

Таблица 7

Тело

T2*

Тело

T1*

k

kT1*

T2* / kT1*

δ%

Ме0

0,2408

Сле

0,0694

7/2

0,2432

0,990304

1,03

Вπ

0,6068

Ме0

0,2408

5/2

0,6021

1,007897

0,73

Зπ

0,9669

В0

0,6152

11/7

0,9667

1,000202

0,03

Маπ

1,6162

Зα

1,0338

11/7

1,6246

0,994791

0,57

Цπ

3,9432

Маα

2,1604

11/6

3,9608

0,995554

0,50

Юπ

10,7539

Цα

5,3472

2/1

10,6944

1,005564

0,50

Стπ

26,3072

Юα

13,0539

2/1

26,1079

1,007633

0,70

Уπ

76,3596

Стα

32,8829

7/3

76,7268

0,995213

0,53

Нπ

161,981

Уα

92,2326

7/4

161,407

1,003557

0,30

Пπ

144,369

Нα

167,630

6/7

143,683

1,004770

0,42

 

 

 

 

 

 

1,000548

0,53

Выводы

Величины, обратные эксцентриситетам орбит планет образуют числа, близкие к числам Люка и Фибоначчи.

Периоды ширины орбитальных колец находятся в резонансе с периодами планет, расположенными через одну орбиту ближе к Солнцу.

Частоты ширины орбитальных колец находятся в резонансе с частотами обращения планет, расположенных дальше от Солнца через одну орбиту.

Периоды ширины орбитальных колец как земной группы планет, так и планет, внешних по отношению к земной орбите, образуют две группы тел с общими резонансами внутри группы.

Частоты ширины орбитальных колец, нормированные на частоту ширины орбиты Нептуна, образуют числовой ряд близкий к числам Люка и Фибоначчи.

Девиации периодов обращений планет находятся в резонансе с периодом обращения соседней планеты, расположенной ближе к Солнцу.

Экстремальные периоды в ближайших апсидах соседних планет находятся в резонансе, а числовые коэфициенты резонансов на 85% состоят из чисел Люка (2, 3, 4, 7, 11).

Имеют место ещё и другие резонансные соотношения для частот ширины орбит, девиаций частоты и экстремальных значений частот планетных орбит, но ввиду ограниченности объёма работы мы этих результатов вычислений не приводим.

Список литературы

К.П. Бутусов. «Золотое сечение в Солнечной системе». Проблемы исследования Вселенной, вып. 7. М.-Л., 1978.

Дата добавления: 18.12.2004

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.