uбэ

 а)



Рис. 7.4. Входная (а) и выходная (в) характеристики транзисторного ключа ОЭ

входное и выходное сопротивления закрытого кремниевого транзистора, определяемые сопротивлениями обратносмещенных коллекторного и эмиттерного переходов, при расчетах прини­мают бесконечно большими.

Ток коллекторного перехода закрытого германиевого тран­зистора на несколько порядков больше, чем ток кремниевого. Поэтому при анализе импульсных схем с германиевыми транзис­торами его учитывают и транзистор в режиме отсечки представ­ляют источником тока, действующим в цепи коллектор — база.

Прямые ветви входных статических характеристик в первом приближении представляются экспоненциальной зависимостью тока базы  от напряжения база — эмиттер. Следовательно, сколь угодно малое увеличение напряжения uбэ приводит к рос­ту Iб. Однако ток базы становится заметным лишь при опреде­ленном значении и uбэ = Uотп. Поэтому при расчетах импульсных схем удобно пользоваться напряжением отпирания (открывания) Uотп.

Режиму отсечки соответствует точка А на статических ха­рактеристиках транзистора.

Режим насыщения. Транзистор открывается, когда на вход подается положительное напряжение, и при условии uбэ > Uотп.   коллекторный  и базовый  токи увеличиваются. По мере на­растания тока базы растет коллекторный ток и уменьшается кол­лекторное напряжение uкэ за счет падения напряжения на ре­зисторе а также уменьшается обратное напряжение, приложенное к коллекторному переходу.

Пока при увеличении тока  на коллекторном переходе имеется обратное напряже­ние, транзистор находится в активном режиме и имеет место сле­дующее соотношение между токами:

При некотором значении базового тока напряжение на кол­лекторном переходе  становится равным нулю и дальнейшее увеличение тока Iб, а следовательно, и тока Iк приводит к появ­лению прямого напряжения на коллекторном переходе, т. е. потенциал базы относительно коллектора становится положи­тельным. В прямом направлении оказывает­ся включенным не только эмиттерный, но и коллекторный пере­ход. Это приводит к тому, что не все носители, инжектированные эмиттером и дошедшие до коллекторного перехода, перехваты­ваются им. Навстречу потоку неосновных носителей, идущих из базы в коллектор, движется поток таких же носителей из коллек­тора в базу, и суммарный их ток определяется разностью этих потоков. В результате коллекторный ток при дальнейшем уве­личении тока базы перестает расти. Транзистор переходит в режим насыщения, который характеризуется постоянством тока коллектора В связи с тем что в режиме насыщения кол­лекторный переход не осуществляет полной экстракции носите­лей из базы, там происходит их накопление и интенсивная ре­комбинация и пропорциональная зависимость между токами Iб и Iк не выполняется.

Напряжения на коллекторе и базе  насыщен­ного транзистора остаются практически постоянными.

Токи, протекающие во внешней цепи транзистора в насыще­нии, определяются следующими соотношениями:

где  UБ+, UП -  напряжения источников питания базы и коллек­тора.

Как видно, токи транзисторного ключа в режиме насыщения определяются внешними параметрами схемы и практически не зависят от характеристик-транзистора. Режиму насыщения соот­ветствует точка В на статических характеристиках.

Режим насыщения кремниевого транзистора определяется условием    uкб = -Uотп  При заданных коллекторном и базовом токах удобным для расчетов является критерий насыщен­ного состояния по току. Его можно установить, рассуждая так. Пропорциональная зависимость между токами Iб и Iк , справедливая для активного режима, сохраняется вплоть до отпирания коллекторного перехода. Следовательно, на границе активного режима и режима насыщения также имеет место соотношение  где Iб гр - базо­вый ток, при котором транзистор входит в режим насыщения. Как было отмечено, дальнейшее увеличение базового тока не приводит к росту коллекторного тока. Таким образом, критерий насыщенного состояния транзистора можно записать в виде

 (7.1)

Если в соотношение (7.1) подставить выражения для токов получим:

В реальных условиях работы транзисторного ключа напря­жения источников питания могут изменяться, имеет место также разброс сопротивлений резисторов и коэффициента передачи тока h21э. Это может привести к невыполнению неравенства (7.1), выходу транзистора из режима насыщения и соответственно к изменению коллекторного тока и выходного напряжения. Для обеспечения устойчивого режима работы транзисторного ключа параметры его рассчитывают таким образом, чтобы неравенство (7.1) выполнялось при изменениях в некоторых пределах вхо­дящих в него величин.

Помехоустойчивость транзисторного ключа тем больше, чем выше коэффициент насыщения:

Хотя для повышения помехоустойчивости желательно увеличивать коэффициент насыщения, однако сле­дует помнить, что при этом растет время переключения транзис­торного ключа.

3. ВКЛЮЧЕНИЕ ТРАНЗИСТОРНОГО КЛЮЧА

Транзистор переходит из режима отсечки в режим насыщения и обратно не мгновенно, а в течение определенного времени. Эта инерционность биполярного транзистора обусловлена двумя ос­новными факторами: накоплением заряда неосновных носителей в базе и емкостями коллекторного Ск и эмиттерного Сэ перехо­дов. Кроме того, на длительность переходных процессов тран­зисторного ключа оказывает влияние емкость нагрузки Сн.

Расчет длительности переходных процессов в транзисторном ключе проводится методом заряда, базирующимся на том факте, что в базе объемный заряд неосновных носителей скомпенсиро­ван, т. е. база электрически нейтральна.

Метод заряда. Так как в базе (p-область) неосновными но­сителями являются электроны, то при uбэ > Uотп ток базы iб(t) определяет скорость накопления электронов dq/dt в ней (q — заряд неосновных носителей) и компенсирует их убывание q/t в результате рекомбинации (t  — время жизни неосновных носителей в базе). Кроме того, ток базы идет на перезарядку ем­костей' Ск и Сэ при изменении напряжения на переходах. Следо­вательно,

        (7.2)

Если емкостные токи коллекторного  и эмиттерного  переходов невелики, то уравнение (7.2) упрощается:

                dq/dt + q/t = iб(t)           (7.3)

В стационарном состоянии, когда dq/dt = 0,

q = tIб,                                                 (7.4)

т. е. избыточный заряд неосновных носителей в базе пропорцио­нален базовому току. Это соотношение справедливо не только в активном режиме, но и в режиме насыщения транзистора.

С помощью уравнений (7.2) или (7.3) можно определить объем­ный заряд неосновных носителей в базе в функции времени. Од­нако при расчете импульсных схем на транзисторах основной ин­терес представляет определение закона изменения коллекторно­го тока.

В активном режиме работы транзистора при условии, что рас­пределение концентрации неосновных носителей заряда в базе является линейным, имеет место соотношение, которое с извест­ным приближением дает связь между зарядом неосновных носителей в базе и коллекторным током транзистора:

                              (7.5)

Это соотношение в стационарном режиме справедливо с высокой точностью. Однако в переходном режиме, длительность которо­го соизмерима с временем распространения носителей вдоль базы, линейный характер распределения неосновных носителей в базе нарушается.

Решая уравнения (7.2) или (7.3) и используя соотношение (7.5), можно определить закон изменения коллекторного тока при заданном базовом токе. Преобразуем по Лапласу уравнение (7.3), поскольку это упрощает процедуру решения при различных начальных условиях:

                              (7.6)

где q(0) — начальное значение заряда неосновных носителей в базе; р — оператор Лапласа.

Задержка включения. Рассмотрим процесс включения тран­зисторного ключа при условии, что в момент времени /о на его входе напряжение скачком изменяется от Uб- до Uб+ (рис. 7.5). В базовой цепи устанавливается ток . Хотя управляющее напряжение изменяется скачком, разность потенциалов между базой и эмиттером из-за наличия прежде все­го емкостей Сэ и Ск нарастает до значения Uотп при котором транзистор открывается, но не сразу, а в течение определенного времени. Таким образом, импульс коллекторного тока начина­ется в момент времени, т. е. с некоторой задержкой относи­тельно момента подачи отпирающего напряжения  Интервал времени tзд = t1 – t0 определяет длительность стадии задерж­ки - время, в течение которого происходит перезарядка ем­костей Сэ и Ск. Так как в это время через транзистор протекают емкостные токи, то эквивалентная схема транзисторного ключа

Рис. 7 5. Переходные процессы в ключе ОЭ Рис. 7.6. Эквивалент­ная схема ключа

 

на этапе задержки включает внешние резисторы и емкости пере­ходов   (рис. 7.6).

В транзисторном ключе обычно Rб > Rк поэтому, пренебре­гая Rк получим цепь первого порядка, переходной процесс в которой определяется соотношением

где . Когда ем­кость нагрузки транзисторного ключа Сн соизмерима или боль­ше суммарной емкости переходов, . После подстановки получим

Стадия задержки заканчивается, когда  поэтому

Формирование фронта. Когда в момент времени t1 эмиттерный переход открывается, начинается процесс нарастания коллек­торного тока, сопровождающийся снижением коллекторного на­пряжения. Коллекторный ток увеличивается до момента време­ни t2 , когда транзистор входит в режим насыщения. В интервале времени t1 …t2 . происходит формирование фронта импульса тока. Длительность фронта tф = t1  + t2 можно определить из уравне­ния (7.6). Так как начальный объемный заряд q(0) = 0, а

                            (7.9)

Подставив выражение (7.9) в (7.5), получим:

                             (7.10)

Таким образом, и объемный заряд неосновных носителей в базе, и коллекторный ток во время формирования фронта из­меняются по экспоненциальному закону. Когда iк (t2 ) = Iк и заряд неосновных носителей в базе достигает значения q(t2) =  tIк нас /h21э, формирование фронта заканчивается. Восполь­зовавшись соотношением (7.9), получим формулу для расчета длительности фронта

                                   (7.11)

Из полученного соотношения следует, что увеличение базового тока включения приводит к уменьшению длительности фронта импульса коллекторного тока. Если при формировании фронта емкостный ток соизмерим с коллекторным током транзистора, то для расчета tф в формуле (7.11) необходимо заменить t на tэкв из (7.8).

После того как транзистор войдет в режим насыщения, ток iк и напряжение uкэ перестают изменяться, но процесс накопле­ния заряда продолжается по экспоненциальному закону в соот­ветствии с выражением (7.9), однако постоянная времени здесь другая: tнас = (0,8. . .0,9)t.

Поскольку процесс накопления носит экспоненциальный ха­рактер, то время, в течение которого заряд неосновных носителей достигает стационарного значения, можно вычислить по форму­ле tнас = (0,8. . .0,9)tнас .

На этом процесс включения транзисторного ключа заканчи­вается.

4. ВЫКЛЮЧЕНИЕ ТРАНЗИСТОРНОГО КЛЮЧА

Когда в момент времени t3 происходит переключение входного напряжения с Uб+ на Uб- (см. рис. 7.3), начинается процесс вы­ключения транзисторного ключа. При переключении входного напряжения ток базы меняет направление и становится равным

Стадия рассасывания. В результате изменения направления базового тока начинается процесс рассасывания неосновных носителей. Несмотря на уменьшение заряда, транзистор некото­рое время находится в режиме насыщения и коллекторный ток остается равным Iк нас  В момент времени t4 (см. рис. 7.5) кон­центрация неосновных носителей около коллекторного перехода уменьшается до нуля и на коллекторном переходе восстанавли­вается обратное напряжение.

Таким образом, интервал времени tрас = t4 – t3 определяет за­держку среза импульса коллекторного тока. Время tрас, кото­рое называется временем рассасывания, можно определить из уравнения (7.6), положив

Переходя от изображения к оригиналу, получим

Этап рассасывания заканчивается, когда транзистор входит в активный режим, и если положить, что в момент времени t4 объемный заряд q(t4) = tнас Iк нас /h21э  , то получим

                        (7.12)

Иногда зарядом q(t4 ) пренебрегают, и формула для расчета вре­мени рассасывания принимает вид

Стадия формирования спада. В дальнейшем начинается умень­шение базового и коллекторного токов, что сопровождается уве­личением напряжения uкэ и формируется спад вершины импульса коллекторного тока. Процессы, протекающие в транзисторном ключе в этой стадии, довольно сложны, и количественная оцен­ка длительности спада  зависит от того, какие факторы пре­валируют. Принимая во внимание, что в момент окон­чания стадии спада q(t5) = 0, получаем

                       (7.13)

Данная формула получена при довольно грубом приближе­нии, поскольку в действительности ток базы не остается пос­тоянным и нельзя пренебрегать токами зарядки  и емкости нагрузки  транзисторного ключа. Когда определяющим явля­ется процесс зарядки этих емкостей, то длительность спада рас­считывается по формуле

5. СПИСОК ЛИТЕРАТУРЫ

1. Быстров Ю. А. Мироненко И. Г. “Электронные цепи и устойства”

2. Манаев Е. И. “Основы радиоэлектроники”

3. Степаненко И. П. “Основы микроэлектроники”

4. Пасынков В. В. “Полупроводниковые приборы”

Дата добавления: 04.02.2002

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации