• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Медицина, здоровье
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Филлотаксис и последовательность Фибоначчи

Филлотаксис и последовательность Фибоначчи

В. Березин

Реальные соцветия подсолнуха два семейства логарифмических спиралей Спирали одного семейства закручиваются к центру против хода часовой стрелки, другого — по ходу. В ботанике такое сочетание двух семейств спиралей называют филлотаксисом (в переводе с греческого слово это означает «устройство листа»).

Оказывается, числа спиралей в соцветиях подсолнечника приближенно равны двум соседним членам так называемой последовательности Фибоначчи: 34 и 55 или 89 и 144.

Филлотаксис подсолнечника — одна из многих неожиданных встреч с последовательностью Фибоначчи. Впервые с ней столкнулся в прошлом столетии французский математик Эдуард Люка. Читая книгу «Искусство абака» знаменитого итальянского математика эпохи Возрождения Леонардо Пизанского, известного больше по прозвищу Фибоначчи, и решая одну из задач Леонардо, Люка составил последовательность 0, 1, 1, 2, 3, 5, 8, ..., в которой

Fn = Fn–1 + Fn–2.

Неожиданная встреча с этой последовательностью состоится сейчас и у нас. Предположим, что α2 = 1 – α.

Выразим значения степеней α3, α4, α5, ... через 1 = α0 и α:

α3 =

α·α2 = 2α – 1,

α4 =

2 – 3α,

α5 =

5α – 3, ...

Вы узнали в коэффициентах последовательность Фибоначчи, начиная с члена F1? По-видимому, и для любого n можно записать формулу

αn = (–1)n (Fn–1 – Fnα),

где Fn–1 и Fn — члены последовательности Фибоначчи. Докажем это методом математической индукции:

αn+1 = αn·α

= (–1)n (Fn–1α – Fnα2) = (–1)n (Fn–1α – Fn(1 – α)) =

= (–1)n (–Fn + (Fn–1 + Fn)α) = (–1)n+1 (Fn – Fn+1α).

У уравнения α2 = 1 – α два корня — положительный α = (√5 – 1)/2 и отрицательный α = –(√5 + 1)/2. Как мы убедились,

ì

(–1)n α1n = Fn–1 – Fnα1,

í

î

(–1)n α2n = Fn–1 – Fnα2.

Решая эту систему относительно Fn, получаем, что

Fn =

1

√5

(

1 + √5

2

)

n

–

(

1 – √5

2

)

n

.

И этот результат довольно неожидан — последовательность целочисленная, а общий её член выражается через квадратные радикалы.

Следующую неожиданность получим, если вычислим

lim

n → ∞

Fn

Fn+1

=

√5 – 1

2

.

Это знаменитое «золотое сечение» (о нём см., например, «Квант», 1973, №8, с.22 и далее). Прямоугольный предмет с таким отношением сторон наиболее приятен для глаза.

Существует много формул, связывающих между собой члены последовательности Фибоначчи. Вот некоторые из них:

n

n

Fn+2 = 1 +

∑

Fk,    F2n =

∑

F2k–1,

k=1

k=1

n

2n–1

F2n+1 = 1 +

∑

F2k,    F2n–2 = –1 +

∑

(–1)k–1 Fk,

k=1

k=1

2n–1

F

2

2n

=

∑

FkFk+1,    F2n–1 = F

2

n

+ F

2

n–1

.

k=1

Выкладывание этой скромной по размеру статьи преследует несколько целей. Во-первых, «всякое может быть». Возможно, эту публикацию увидит школьник, впервые услышавший о числах Фибоначчи и желающий узнать о них побольше. Он сможет здесь найти названия книг для дальнейшего чтения. Во-вторых, данная статья упоминалась в другой, уже выложенной статье о сопряжённых числах , и я постарался (в меру сил), чтобы тем, кто добрался до тамошнего списка дополнительной литературы, не пришлось далеко ходить. :) И наконец, главное: этот файл содержит линк на видеоролик, в котором рассказывается и про подсолнух, и про прямоугольник, «приятный глазу», и про золотое сечение. В общем, почти видеоверсия данной статьи. А то, что закадровый комментарий на английском, так это и неплохо — лишний повод поупражняться в языке.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://ega-math.narod.ru/

Дата добавления: 05.10.2004

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.