• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Иностранный язык
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Anwendung eines neuronalen Netzwerkes fuer die Erkennung der Zeit-Frequenz Repraesentationen

Anwendung eines neuronalen Netzwerkes fuer die Erkennung der Zeit-Frequenz Repraesentationen

V.Barat, D.Slesarev, V.Lunin, H.-U. Seidel

Kurzfassung. Die Anwendung von neuronalen Netzwerkes - Neokognitrons, fuer Erkennung und Klassiefizierung von 2-dimensionalen Zeit-Frequenz Repraesentationen (die werden als 2-dimensionale Farbbilde dargestellt) der vibroakustischen Signale wurde untersucht.

Es its gut bekannt, dass die instationaere Regime der meschanischen Einrichtung (z.B. Anlauf, Ablauf von rotierenden Maschinen) viel mehr informativ als stationaere sind, also viel mehr information ueber technischen Zustand der Einrichtung tragen. Es ist aber problematisch, diese Regime mit Hilfe konventionele Methoden (z.B. FFT)  zu untersuchen, so verwendet man dafuer Zeit-Frequenz Repraesentationen, solche wie z.B. Geglaettete Wigner Distribution (SWD), die die Veraenderung der Energieverteilung im Frequenzbereich mit der Zeit beschreiben, und deren Parametern angepasst sein koennen, die interessierende Signaleigenschaften (momentan Amplituden der Signalkomponenten) mit der vorgegebenen Genauigkeit zu bewerten [1]. Diese Zeit-Frequenz Repraesentationen werden als 2-dimensionale farben Abbildungen - Sonogrammen - grafisch dargestellt.

Die Aufgabe folgender Merkmalextraktion und die Klassifizierung des Signale aufgrund der extrahierte Merkmaele ist aber keinesfalls trivielle Aufgabe, da es sehr viel Einflussfaktoren gibt. Deswegen wurde es vorgeschlagen, fuer diese Aufgabe ein neuronale Netzwerk zu verwenden. Das ausgewaelte Netzwerkarchitektur - Neokognitron - wird fuer die Erkennung einiger grafischen Objekte erfolgreich verwendet [2].

Das Netzwerkstruktur laesst sich fuer die Extraktion bestimmter Merkmaele von Sonogrammen einstellen, aufgrund denen folgende Signalklassifizierung durchgefuert werden kann. Dabei gibt man die zulaessige Abweichungen dieser Merkmaele an. An der Abbildung 1 ist eine typische Sonogramme dargestellt (die dem Ablauf einer E-Maschine entspricht).

An computersimulierten Signale hat Neokognitron gute Faehigkeit gezeigt, die bedeutende Merkmaele der Zeit-Frequenz Repraesentationen (SWD) zu extrahiren. Danach wurden die experimentale Daten (vibroakustische Signale Ablaufs einer E-Maschine) mit Hilfe dieser Netzwerke bearbeiten, dabei haben die Experimente gute Abstimmung mit der Simulationsergebnisse gegeben. Einige Merkmaele der SWD ermoeglichen es, guter und schlechter Maschinenzustand von eineinder trennen.

Abbildung 1

Список литературы

Slesarev D., Schade H.-P., «Optimal geglдttete Wigner-Distribution fьr ein Signalmodell», Ilmenau, IWK-40, B.1, S.490, 1995.

Lau C., Neural Networks. IEEE Press 1992.

Дата добавления: 13.08.2003

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.