• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Спектр спиновых волн в антиферромагнетиках с неколлинеарными магнитными подрешетками

Кызыргулов И.Р.

Как известно, кристалл  приближенно имеет коллинеарную антиферромагнитную структуру [1, 2]. Ряд экспериментальных работ указывает на наличие слабого ферромагнитного момента в плоскостях , направленного перпендикулярно плоскости и имеющего противоположные направления в соседних плоскостях [3, 4]. Ферромагнитный момент возникает при выходе магнитных моментов ионов  из базисной (001) плоскости при повороте их на небольшой угол вследствие поворота октаэдров  в ортофазе. Другими словами, магнитные моменты подворачиваются в плоскости (010) на малый угол [5]. Но поскольку в соседних плоскостях октаэдры развернуты в противофазе, это приводит к противоположной направленности ферромагнитных моментов в соседних плоскостях, что означает, антиферромагнитную модуляцию вдоль оси [001]. Из исследований инфракрасных спектров, неупругого рассеяния нейтронов и двухмагнонного рассеяния света определена величина угла скоса, которая оказалось равной  [4, 6].

Исследуем влияние неколлинеарности магнитных подрешеток на спектры спиновых волн в кристалле  как поправку к спектру, найденному в работе [7].

Будем исходить из гамильтониана, в котором учитывается энергия магнитной системы:

,  (1)

 ,

где - тензор однородного обменного взаимодействия,  - тензор анизотропии, - тензор неоднородного обменного взаимодействия,  - намагниченности подрешеток, , . Тензор  выберем в виде

,

где I - постоянная внутриплоскостного взаимодействия (в CuO2 - плоскости), ,  - постоянные межплоскостного взаимодействия.

Далее ввиду эквивалентности подкластеров можно ввести следующую систему обозначений:

,

, ,

.

Аналогичных обозначений будем придерживаться и для компонент тензоров  c учетом соотношения из орторомбичности кристаллической структуры

, , .

Эксперименты по неупругому нейтронному рассеянию дают значение для постоянной внутриплоскостного обменного взаимодействия  [8] и верхнюю оценку для постоянных межплоскостного обменного взаимодействия . Приведенные экспериментальные данные позволяют считать в нашем приближении .

Запишем гамильтониан (1) в представлении приближенного вторичного квантования. Намагниченности подрешеток  можно выразить через операторы Гольштейна-Примакова:

,   (2)

                     (2.1)

где  - равновесная намагниченность  - той подрешетки,  , g - фактор Ланде,  - магнетон Бора.

Подставляя (2) в (1) и переходя к фурье-представлению операторов

,

получим:

,    (3)

,                              (3.1)

.         (3.2)

Перейдем к исследованию конкретного случая. Введем сферические координаты базисных векторов (2.1). Учитывая малую величину угла откоса, напишем:

,     ,    ,

,      ,

,

,

,      .                         (4)

Тогда в соответствии с системой инвариантов группы  коэффициенты  (3.1-3.2) будут иметь вид:

,                          (5.1)

                  (5.2)

Отсюда, используя выбор ортов (4) и учитывая направления равновесных намагниченностей, получим:

, ,

,                   (6)

где .

Выпишем компоненты  в явном виде ввиду их важности для дальнейшего.

,

,

,

,               (7)

,

,

,

.        (8)

Для упрощения диагонализации гамильтониана (3) введем вместо операторов  операторы  согласно следующим формулам:

,

,

,

.                     (9)

Тогда с учетом (6) гамильтониан (3) в новых операторах  имеет вид:

, (10)

где

,

,

,

           (11)

и  аналогично выражаются через компоненты матрицы В.

Разделим  и  на слагаемые, не содержащие величину , и слагаемые, содержащие :

, .

В гамильтониане (10) с помощью канонического u-v-преобразования Боголюбова

,                      (12)

,

,

перейдем к магнонным операторам . Диагонализованный гамильтониан имеет стандартный вид:

,                    (13)

где  - энергия спиновых волн коллинеарного антиферромагнетика, - поправка к энергии, связанная с неколлинеарностью подрешеток.

,

,

,

.

Если , , то поправки к спектрам спиновых волн, определяемые неколлинеарностью магнитных подрешеток, будут иметь порядок:

,     ,

,     .

Линейная зависимость поправки  от обменного параметра I и квадратичная зависимость от угла откоса  может привести в некоторых случаях к немалым изменениям спектра спиновой волны.

Выражаю благодарность научному руководителю М.Х.Харрасову за предоставленную задачу и постоянную помощь.

Список литературы

Vaknin D., Sinha S.K., Moncton D.E. et al. // Phys. Rev. Lett. 1987. V. 58. P. 2802-2805.

Shirare C., Endoh Y., Birgineau R.J. et al. // Phys. Rev. Lett. 1987. V. 59. P. 1613-1616.

Kastner M.A., Birgeneau R.J., Thurston T.R. et al. // Phys. Rev. B. 1988. V. 38. P. 6636-6640.

Thio T., Thurston T.R., Preyer N.W. et al. // Phys. Rev. B. 1988. V. 38. P. 905-908.

Endoh Y., Yamada K., Birgeneau R.J. et al. // Phys. Rev. B. 1983. V. 37. P. 7443-7453.

Боровик-Романов А.С., Буздин А.И., Крейнес Н.М., Кротов С.С. // Письма в ЖЭТФ. 1988. Т. 47. С. 600-603.

Абдуллин А.У., Савченко М.А., Харрасов М.Х. // ДАН. 1995. Т. 342. ¹ 6. С. 753-756.

Hayden S.M., Aeppli G., Osborn R. et al. // Phys. Rev. Lett. 1991. V. 67. P. 3622-3625.

Для подготовки данной работы были использованы материалы с сайта http://www.bashedu.ru

Дата добавления: 19.11.2006

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.