• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Распределение Гаусса. Центральная предельная теорема теории вероятностей. Распределения Пирсона и Стьюдента

С.В. Усатиков, кандидат физ-мат наук, доцент; С.П. Грушевский, кандидат физ-мат наук, доцент; М.М. Кириченко, кандидат социологических наук

Впервые нормальный закон был обнаружен в Х1Х веке в применении к теории ошибок измерения Лапласом и Гаусcом. Сейчас, после доказанной Ляпуповым центральной предельной теоремы, стало уже ясным, почему этот нормальный закон широко распространен в технике, биологии, социологии, психологии и многих других сферах человеческих знаний. Все его содержание показано на рисунке 1, на графике плотности распределения вероятностей.

Рис.1

Рис.1 Плотность распределения вероятностей нормального закона

1,2 - графики с одним средним m и разными стандартными отклонениями s , причем s 1<s 2

3 - график при m =0, s =1 для Z - закона и примерным распределением площадей под кривой.

Под аргументом x здесь можно понимать самые различные числовые величины, не поддающиеся предсказанию до проведения эксперимента: рост, вес, число ошибок при тестировании, умственное развитие, склонность к правонарушениям и любые другие, возникающие как результат сложения многих независимых (или слабо зависимых) и сравнимых по порядку своего влияния случайных воздействий. Функция f(x) показывает следующую важнейшую информацию: вероятность числовой величине х принять значение больше числа а и меньше числа в равна площади под кривой f(x) на отрезке [ a,b] (рис.1). Разумеется, это касается любых a и b, близких между собой или далеких, расположенных в любом месте прямой х. Кроме того, площадь под всей кривой f(x) равна 1, т.е. вероятность для х попасть на прямую равна 1, и это событие достоверное (это свойство еще называется условием нормировки).

У нормального закона два параметра, полностью его определяющих: числа m и s . Число m есть средняя величина для интересующих нас числовых показателей: средний рост, средний вес и т.п. Меняя m , можно т совершать параллельный перенос кривой f(x) вдоль оси х. Видно также, что наиболее вероятно появление числа х в эксперименте вблизи m : площадь под f(x)на любом отрезке, содержащем m, самая большая.

Число s есть среднее отклонение числового показателя х от числа m: чем меньше s , тем “круче” становится “холм” f(x) (рис.1) и тем меньше вероятность для х сильно отличаться от m. Наоборот, при больших s “холм” f(x) растекается по “равнине” и с почти равной вероятностью х может появиться как вблизи m , так и сколь угодно далеко от m.

Если числовой показатель х пересчитать в число Z по следующему правилу:

то все “холмы” f(x) превратятся в кривую 3 закона Z Гаусса на рис.1. Тогда все точки ± 1 для Z соответствует точкам m± s для х, а точки ± 3 для Z - точкам m± 3s для х. По распределению площадей под кривой 3 видно, что на отрезке [ -3,3] сосредоточено примерно 99,7% всей площади под кривой f(x). Отсюда вытекает так называемое правило “трех s “ для закона Z: с вероятностью р=0,997 случайная величина х отклоняется от то все “холмы” f(x) превратятся в кривую 3 закона Z на рис.1. Тогда все точки ± 1 средней m (влево или вправо) не более чем на 3s .

Теперь настал момент объяснить, почему так много внимания уделяется “холму” f(x) на рис.1. В теории вероятностей доказана теорема, совершенно справедливо названная центральной предельной теоремой. В грубых чертах, сумма большого числа (практически более 7 - 10) независимых случайных величин, сравнимых по порядку своего влияния на рассеивание суммы, подчиняется нормальному закону. Например, рост человека, на который оказывают влияние очень много факторов, среди которых в массе нет доминирующих по своему влиянию.

С начала ХХ века оказался очень полезным введенный Пирсоном закон c 2 (рис.2): в страховом деле, в выяснении торгового спроса или популярности политиков и т.п.

Рис.2. Плотность распределения вероятностей законаc 2, с n  степенями свободы.

Под аргументом х здесь понимается сумма n независимых слагаемых в квадрате, каждое из которых подчиняется нормальному Z- закону с m =0 и s =1. Ясно, что при больших n (практически при n >30) закон c 2 превращается в нормальный закон с m = n и s =, поскольку действует теорема Ляпунова. Но чаще всего слагаемых не более 10. Число n называеся числом степеней свободы. Смысл f(x) такой же, как и в нормальном законе: вероятность числовой величине х=c 2 попасть в заданный диапазон равна площади под кривой f(x). Так, площадь под кривой на отрезке от 0 до n + составляет более 90% всей площади под всей кривой f(x). Отсюда следут правило “трех s “ для закона c 2: с вероятностью рі 0,9 случайная величина х=c 2 не превосходит величины n +Ц 2n (очевидно, c 2 не может быть отрицательным).

Наконец, необходимо упомянуть закон t Стьюдента, полученный из нормального закона и законаc 2. Случайная величина t получается из дроби в числителе которой стоит случайная величина Z Гаусса с m=0 и s =1, а в знаменателе - случайная величина c 2 с n степенями свободы. По -прежнему при больших n закон Стьюдента переходит в нормальный закон (практически при n і 30). Но даже при небольших n вид кривой плотности распределения вероятностей для t очень похож на кривую 3 рис.1. Разница в том, что вместо s =1 для Z необходимо брать s =n /(n -2), т.е.среднее отклонение t от m=0 больше, чем среднее отклонение Z от m=0. Соответственно “холм” закона t более пологий, чем “холм” закона Z.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://mschool.kubsu.ru

Дата добавления: 27.01.2006

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.