• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Сегнетоэлектрики

М.И. Векслер, Г.Г. Зегря

Сегнетоэлектрики представляют собой специфический класс сред, характеризующийся высоким значением диэлектрической проницаемости (на основной кривой поляризации), нелинейностью зависимости , гистерезисом зависимостей D(E) и P(E), а также сохранением поляризованности после отключения внешнего поля. Именно последнее свойство наиболее важно, и во многих случаях под словом "сегнетоэлектрик" подразумевается "область спонтанной поляризованности ", слабо чувствительная к дополнительному наложению электрического поля.

Расчет поля сегнетоэлектриков производится следующим образом. По формулам

(50)

находится связанный заряд, а затем находится создаваемое им поле с помощью закона Кулона, как если бы этот заряд был свободным:

(51)

Если есть выраженная симметрия, то возможно и применение теоремы Гаусса в виде . Мотивацией такого метода является уравнение Максвелла .

При наличии, помимо сегнетоэлектриков, еще и сторонних зарядов поле последних суммируется с полем сегнетоэлектриков.

Для нахождения смещения привлекается соотношение

(52)

При этом никаких ε для сегнетоэлектрика вводиться не должно.

Задача. Имеется бесконечная пластина из однородного сегнетоэлектрика с поляризованностью . Найти векторы и внутри и вне пластины, если вектор направлен a) перпендикулярно, b) параллельно поверхности пластины.

Решение Разберемся прежде всего в том, какова будет в обоих случаях, то есть какие связанные заряды присутствуют. Для этого надо проверить, как изменяется в направлении самого себя. В случае б) , в том числе и на границах; на них , конечно, изменяется, но не в направлении . А вот в случае а) имеет место скачок от (до) нуля на границах как раз в направлении . Соответственно, поверхностная плотность заряда равна:

σ'(a) = ± P

причем знак плюс берется для той поверхности, в сторону которой "смотрит" вектор , по определению σ'. Как уже говорилось,

σ'(b) = 0

Следовательно, в случае а) мы имеем ситуацию, аналогичную конденсатору и получаем

в то время как

Заметим, что в случае а) ошибкой было бы записать D = σ'; теорема Гаусса применяется к вектору .

Соответственно, по формуле имеем:

 =

 =

Задача. Пластина из сегнетоэлектрика с поляризованностью P, перпендикулярной поверхностям, помещена в конденсатор, обкладки которого замкнуты друг на друга. Пластина занимает η-ю часть зазора и параллельна обкладкам конденсатора. Найти E и D в пластине и в остающемся незаполненным зазоре.

Решение Если Eplate и Eair обозначают электрическое поле, соответственно, в пластине и в воздушном зазоре, то, ввиду замкнутости обкладок конденсатора друг на друга,

η Eplate +(1–η) Eair = 0

Величина D в зазоре и в пластине одна и та же, так как любой другой вариант противоречил бы условиям для нормальной компоненты D на границе пластина-воздух.

Dplate = ε0Eplate+P = Dair = ε0Eair

Из последней цепочки равенств имеем

Eair = Eplate+ε0–1P

Используя это, получаем

η Eplate +(1–η)(Eplate+ ε0–1P) = 0

откуда

Eplate = –(1–η)ε0–1P, Eair = ηε0–1P

Смещение всюду одно и то же и равно Dplate = Dair = η P.

Задача. Тонкий диск радиуса R из сегнетоэлектрического материала поляризован однородно и так, что вектор лежит в плоскости диска. Найти и в центре диска, считая, что толщина диска h намного меньше, чем R.

Решение Введем систему координат так, чтобы плоскость xy была плоскостью диска, а . Найдем связанные заряды. всюду равна нулю, за исключением обода диска (на круглых поверхностях диска тоже , так как там не меняется в направлении ). Поверхностный заряд составит

σ' = –Pr|R+0+Pr|R–0 = Psinφ

где φ угол в полярной системе координат, отсчитываемый от оси x, как обычно. Зная σ', можно найти поле по закону Кулона ():

 =

 =

 =

При получении последнего равенства использовано условие R>> h. Обратим внимание на то, что при R→∞ .

Смещение найдется просто как

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.

Для подготовки данной работы были использованы материалы с сайта http://edu.ioffe.ru/r

Дата добавления: 30.06.2011

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.