• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Интерполяция функций

Интерполяция функций

Лабораторная работа по дисциплине «Вычислительные методы линейной алгебры».

Министерство образования Российской Федерации.

Хабаровский государственный Технический Университет.

Кафедра «Прикладная математика и информатика»

Хабаровск 2003

Задание.

1) Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Вычислить значения в точке х=1.25.

xi

1

1.5

2

2.5

3

3.5

yi

0.5

2.2

2

1.8

0.5

2.25

2) Построить интерполяционный многочлен Лагранжа. Начертить график и отметить на нем узлы интерполяции. Вычислить значение в точке х=1.2.

xi

0

0.25

1.25

2.125

3.25

yi

5.0

4.6

5.7

5.017

4.333

3) Выполнить интерполяцию сплайнами третьей степени. Построить график и отметить на нем узлы интерполяции.

xi

7

9

13

yi

2

-2

3

Постановка задачи интерполяция.

Пусть известные значения функции образуют следующую таблицу:

x0

x1

x2

...

Xn-1

xn

y0

y1

y2

...

yn-1

yn

При этом требуется получить значение функции f в точке x, принадлежащей

 отрезку [x0..xn] но не совпадающей ни с одним значением xi.Часто при этом не известно аналитическое выражение функции f(x), или оно не пригодно для вычислений.

В этих случаях используется прием построения приближающей функции F(x), которая очень близка к f(x) и совпадает с ней в точках x0, x1, x2,... xn. При этом нахождение приближенной функции называется интерполяцией, а точки x0,x1,x2,...xn - узлами интерполяции. Обычно интерполирующую ищут в виде полинома n степени:

Pn(x)=a0xn+a1xn-1+a2xn-2+...+an-1x+an

Для каждого набора точек имеется только один интерполяционный многочлен, степени не больше n. Однозначно определенный многочлен может быть  представлен в различных видах. Рассмотрим интерполяционный многочлен Ньютона и Лагранжа.

Интерполяционная формула Лагранжа.

Формула Лагранжа является наиболее общей, может применяться к таким узлам интерполяции, что расстояние между соседними узлами не постоянная величина.

Построим интерполяционный полином Ln(x) степени не больше n, и для которого выполняются условия Ln(xi)=yi . Запишем его в виде суммы:

Ln(x)=l0(x)+ l1(x)+ l2(x)+...+ ln(x),                                         (1)

где lk(xi)= yi, если i=k, и lk(xi)= 0, если i≠k;

Тогда многочлен lk(x) имеет следующий вид:

lk(x)=                                                                                                     (2)

Подставим (2) в (1) и перепишем Ln(x) в виде:

Если функция f(x), подлежащая интерполяции, дифференцируема больше чем n+1 раз, то погрешность интерполяции оценивается следующим образом:

 где0<θ<1                       (3)

Интерполяционная формула Ньютона.

Построение интерполяционного многочлена в форме Ньютона применяется главным образом когда разность xi+1-xi=h постоянна для всех значений x=0..n-1.

Конечная разность k-го порядка:

Δyi=yi+1-yi

Δ2yi= Δyi+1- Δyi=yi+2-2yi+1+yi

………………………………

Δkyi=yi+k-kyi+1-k+k(k-1)/2!*yi+k-2+...+(-1)kyi

Будем искать интерполяционный многочлен в виде:

Pn(x)=a0+a1(x-x0)+a2(x-x0)(x-x1)+...+an(x-x0)(x-x1)...(x-xn-1)

Найдем значения коэффициентов a0, a1, a2, ...,an:

Полагая x=x0, находим a0=P(x0)=y0;

Далее подставляя значения x1, x2, ...,xn получаем:

a1=Δy0/h

a2=Δ2y0/2!h2

a3=Δ3y0/3!h3

....................

an=Δny0/n!hn

Таким образом:

Pn(x)=y0+ Δy0/h*(x-x0)+ Δ2y0/2!h2*(x-x0)(x-x1)+...+ Δny0/n!hn*(x-x0)(x-x1)...(x-xn-1)      (1)

Практически формула (1) применяется в несколько ином виде:

Возьмем: t=(x-x0)/h, тогда x=x0+th и формула (1) переписывается как:

Pn(x)=y0+tΔy0+t(t-1)/2! Δ2y0+...+t(t-1)...(t-n+1)/n!Δny0                                  (2)

Формула (2) называется интерполяционной формулой Ньютона.

Погрешность метода Ньютона оценивается следующим образом:

                                                        (3)

Интерполяция сплайнами.

При большом количестве узлов интерполяции сильно возрастает степень интерполяционных многочленов, что делает их неудобными для проведения вычислений.

Высокой степени многочленов можно избежать, разбив отрезок интерполирования на несколько частей, с построением в каждой части своего интерполяционного полинома. Такой метод называется интерполяцией сплайнами. Наиболее распространенным является построение на каждом отрезке [xi, xi+1], i=0..n-1 кубической функции. При этом сплайн – кусочная функция, на каждом отрезке заданная кубической функцией, является кусочно-непрерывной, вместе со своими первой и второй производной.

Будем искать кубический сплайн на каждом из частичных отрезков [xi, xi+1] в виде:

, где ai,bi,ci,di – неизвестные.

Из того что Si(xi)=yi получим:

В силу непрерывности потребуем совпадения значений в узлах, т.е.:

,i=0..n-1;                                                       (1)

Также потребуем совпадения значений первой и второй производной:

,i=0..n-2;                                                       (2)

,i=0..n-2;                                                       (3)

Из (1) получим n линейных уравнений с 3n неизвестными

,i=0..n-1;                                          (1*)

Из (2) и (3) получим 2(n-1) линейных уравнений с теми же неизвестными:

,i=0..n-1;                                                        (2*)

,i=1..n-1;                                                                                 (3*)

Недостающие два уравнения определим следующим образом. Предположим, что в точках х0 и хn производная равна нулю и получим еще два уравнения. Получим систему из 3*n линейных уравнений с 3*n неизвестными. Решим ее любым из методов и построим интерполяционную функцию, такую что на отрезке [xi, xi+1] она равна Si.

Метод Лагранжа

procedure TForm1.Button1Click(Sender: TObject);

type tip=array of real;

var x,y:tip;

    i,j,n:byte;

    p,s,xx:real;

begin

n:=edt.Count;

setlength(x,n);

setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

xx:=strtofloat(edt.Text);

edt.Lines.Delete(0);

s:=0;

for i:=0 to n-1 do

   begin

      p:=1;

      for j:=0 to n-1 do if i<>j then p:=p*(xx-x[j])/(x[i]-x[j]);

      p:=p*y[i];

      s:=s+p;

   end;

edt.writer('',1);

edt.writer('',s,1);

end;

Сплайн – интерполяция (программа составляет систему линейных уравнений, решая которую находим коэффициенты кубических сплайнов).

procedure TForm1.Button1Click(Sender: TObject);

var b,c,d,x,y:array of real;

    urm:array of array of real;

 i,j,k,n :byte;

begin

n:=edt.Count;

setlength(x,n);setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

setlength(b,n-1);setlength(c,n-1);setlength(d,n-1);

setlength(urm,3*(n-1),3*(n-1)+1);

for i:=0 to 3*(n-1)-1 do

   for j:=0 to 3*(n-1) do urm[i,j]:=0;

for i:=0 to n-1 do edt.writer(' ',y[i],0);

for i:=0 to n-2 do

   begin

      urm[i,3*i+0]:=x[i+1]-x[i];

      urm[i,3*i+1]:=(x[i+1]-x[i])*(x[i+1]-x[i]);

      urm[i,3*i+2]:=(x[i+1]-x[i])*(x[i+1]-x[i])*(x[i+1]-x[i]);

      urm[i,3*(n-1)]:=y[i+1]-y[i];

   end;

for i:=0 to n-3 do

   begin

      urm[i+n-1,3*i+0]:=1;

      urm[i+n-1,3*i+1]:=2*(x[i+1]-x[i]);

      urm[i+n-1,3*i+2]:=3*(x[i+1]-x[i])*(x[i+1]-x[i]);

      urm[i+n-1,3*i+3]:=-1;

   end;

for i:=0 to n-3 do

   begin

      urm[i+2*n-3,3*i+1]:=1;

      urm[i+2*n-3,3*i+2]:=3*(x[i+1]-x[i]);

      urm[i+2*n-3,3*i+4]:=-1;

   end;

urm[3*n-5,0]:=1;        urm[3*n-5,3*(n-1)]:=0;

urm[3*n-4,3*(n-1)-3]:=1;urm[i+2*n-3,3*(n-1)-2]:=2*(y[n-1]-y[n-2])]

urm[3*n-4,3*(n-1)-1]:=3*(y[n-1]-y[n-2]) *(y[n-1]-y[n-2]);

urm[i+2*n-3,3*(n-1)]:=0

for i:=0 to 3*(n-1)-1 do

   begin

      edt.writer('',1);

      for j:=0 to 3*(n-1) do edt.writer('  ',urm[i,j],0);

   end;

end;

Выполнить интерполяцию сплайнами третьей степени. Построить график и отметить на нем узлы интерполяции.

xi

7

9

13

yi

2

-2

3

Решение.

Будем искать кубический сплайн на каждом из частичных отрезков [xi, xi+1], i=0..2 в виде:

, где ai,bi,ci,di – неизвестные.

Из того что Si(xi)=yi получим:

В соответствии с теоретическим положениями изложенными выше, составим систему линейных уравнений, матрица которой будет иметь вид:

При этом мы потребовали равенства производной нулю.

Решая систему уравнений получим вектор решений [b1,c1,d1,b2,c2,d2]:

Подставляя в уравнение значения b1,c1,d1, получим на отрезке [7..9]:

Если выражение упростить то:

Аналогично подставляя в уравнение значения b2,c2,d2, получим на отрезке [9..13]:

или

График имеет вид:

Метод Ньютона

procedure TForm1.Button1Click(Sender: TObject);

type tip=array of real;

var x,y:tip;

    i,j,n:byte;

    p,s,xx,t,h:real;

    kp:array of array of real;

begin

n:=edt.Count;

setlength(x,n);

setlength(y,n);

for i:=0 to n-1 do x[i]:=edt.massiv[i];edt.Lines.Delete(0);

for i:=0 to n-1 do y[i]:=edt.massiv[i];edt.Lines.Delete(0);

xx:=strtofloat(edt.Text);

edt.Lines.Delete(0);

setlength(kp,n,n);

for i:=0 to n-1 do for j:=0 to n-1 do kp[i,j]:=0;

for i:=0 to n-1 do kp[0,i]:=y[i];

for i:= 1 to n-1 do

   for j:=0 to n-i-1 do

      kp[i,j]:=kp[i-1,j+1]-kp[i-1,j];

for i:= 0 to n-1 do

   begin

      for j:=0 to n-1 do  edt.writer(' ',kp[i,j],0);

      edt.writer('',1);

   end;

edt.writer('',1);

h:=0.5;

t:=(xx-x[0])/h;

s:=y[0];

for i:=1 to n-1 do

   begin

      p:=1;

      for j:=0 to i-1 do p:=p*(t-j)/(j+1);

      s:=s+p*kp[i,0];

   end;

edt.writer('',s,1);;

end;

Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Вычислить значение функции в точке х=1.25.

xi

1

1.5

2

2.5

3

3.5

yi

0.5

2.2

2

1.8

0.5

2.25

Решение.

Построим таблицу конечных разностей в виде матрицы:

Воспользуемся интерполяционной формулой Ньютона:

Pn(x)=y0+tΔy0+t(t-1)/2! Δ2y0+...+t(t-1)...(t-n+1)/n!Δny0

Подставив значения получим многочлен пятой степени, упростив который получим:

P5(x)=2.2x5-24x4+101.783x3-20.2x2+211.417x-80.7

Вычислим значение функции в точке x=1.25; P(1.25)=2.0488;

График функции имеет вид:

Построить интерполяционный многочлен Лагранжа. Начертить график и отметить на нем узлы интерполяции. Вычислить значение в точке х=1.2.

xi

0

0.25

1.25

2.125

3.25

yi

5.0

4.6

5.7

5.017

4.333

Решение.

Построим интерполяционный многочлен Лагранжа L4(x), подставив значения из таблицы в формулу:

Напишем программу и вычислим значение многочлена в точке х=1.2:

L4(1.2)=5.657;

Полученный многочлен имеет четвертую степень. Упростим его и получим:

Построим график полученного полинома:

Дата добавления: 25.11.2004

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.