• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Утечка заряда в конденсаторах

М.И. Векслер, Г.Г. Зегря

Диэлектрик в конденсаторе обладает конечным удельным (Ом·см) сопротивлением ξ, которое может зависеть от координат. Ток через конденсатор при U0 = const составляет

(46)

где в случае ξ = ξ(x) или ξ = ξ(r)

(47)

S(x) (или S(r)) обозначает площадь эквипотенциальной поверхности. Если батарею отключить, то напряжение на конденсаторе будет спадать по закону

(48)

где C - емкость. Отсюда получаем

(49)

Задача. Найти сопротивление R цилиндрического конденсатора (R1, R2, L, ξ = сonst).

Решение: Эквипотенциальные поверхности - это боковые цилиндрические поверхности, площадь каждой из которых

S = 2π L r

Поскольку ξ = const, по формуле для сопротивления получаем:

Задача: Напряжение на сферическом конденсаторе емкости C (R1, R2) после отсоединения его от батареи спало в η раз за время Δ t. Найти удельное сопротивление диэлектрика (диэлектрик считать однородным).

Решение: Омическое сопротивление описанного конденсатора равно

где ξ - искомое удельное сопротивление.

Если t = 0 соответствует моменту отсоединения батареи, то, как следует из условия, напряжение на конденсаторе в момент t = Δ t составляет U0/η (U0 - начальное напряжение):

откуда получается

Приравнивая это R и выражение для того же R через ξ, имеем

Задача: Напряжение на цилиндрическом конденсаторе с радиусами обкладок R1, R2 и длиной L спало в η раз за время Δ t после отсоединения конденсатора от батареи. Найти удельное сопротивление диэлектрика (диэлектрик однороден и имеет проницаемость ε).

Ответ:  (нет зависимости от R1, R2, L).

Задача. В диэлектрике проницаемости ε на расстоянии l от бесконечной проводящей плоскости расположен небольшой металлический шарик радиуса a<< l. Найти ток, если между шариком и плоскостью поддерживается разность потенциалов U, а удельное сопротивление среды ξ.

Решение Ток может быть найден в любом эквипотенциальном сечении. Например, можно вычислить ток непосредственно на плоскости, с использованием составляющей электрического поля, перпендикулярной к плоскости и легко вычисляемой методом изображений:

Мы здесь считаем заряд точечным, так как поле ищется далеко от него.

Чтобы связать q с приложенным напряжением, нужно знать емкость C, которая уже найдена в разделе "Вычисление емкости": C = 4πε0ε a. Получается, что

Эта задача могла быть решена и проще: сопротивление R между шариком и плоскостью сосредоточено, в основном, вблизи шарика. Тогда при его вычислении можно грубо считать поле вокруг шарика сферически-симметричным, что дает

после чего ток найдется как I = U/R. Однако, применение такого метода предварительного нахождения R, например, в похожей задаче, в которой вместо заряда задан провод, уже невозможно, в то время как способ интегрирования тока вблизи плоскости остается вполне состоятельным.

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.

Для подготовки данной работы были использованы материалы с сайта http://edu.ioffe.ru/r

Дата добавления: 30.06.2011

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.