• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Формулы (математический анализ)

Формулы (математический анализ)

шпаргалка

Формулы дифференцирования                       Таблица основных интегралов

Правила интегрирования

Основные правила дифференцирования

Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие

производные.

7)

          

Интегрирование по частям                                      

Основные свойства определённого интеграла

Интегрирование простейших дробей

Замена переменной в  неопределенном интеграле

Площадь плоской фигуры

Площадь криволинейной трапеции, ограниченной кривой , прямыми  и отрезком[a, b] оси Ox, вычисляется по формуле

Площадь фигуры, ограниченной кривыми  и прямыми , находится по формуле

Если кривая задана параметрическими уравнениями , то площадь криволинейной трапеции, ограниченной этой кривой, прямыми  и отрезком[a, b] оси Ox, выражается формулой

где  определяются из уравнений

Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением  и двумя полярными радиусами  находится по формуле

Длина дуги плоской кривой

Если кривая y=f(x) на отрезке [a, b] – гладкая (т.е. производная  непрерывна), то длина соответствующей дуги этой кривой находится по формуле

При параметрическом задании кривой x=x(t),  y=y(t) [x(t) и y(t) – непрерывно дифференцируемые функции] длина дуги кривой, соответствующая монотонному изменению параметра , вычисляется по формуле

Если гладкая кривая задана в полярных координатах уравнением , то длина дуги равна

Вычисление объема тела

Вычисление объема тела по известным площадям поперечных сечений.

Если площадь сечения тела плоскостью, перпендикулярной оси Ox, может быть выражена как функция от x, т.е. в виде , то объем части тела, заключенной между перпендикулярными оси Ox плоскостями x=a и x=b, находится по формуле

Вычисление объема тела вращения. Если криволинейная трапеция, ограниченная кривой  и прямыми  вращается вокруг оси Ox, то объем тела вращения вычисляется по формуле

Если фигура, ограниченная кривыми и прямыми x=a, x=b, вращается вокруг оси Ox, то объем тела вращения

Вычисление площади поверхности вращения

Если дуга гладкой кривой  вращается вокруг оси Ox, то площадь поверхности вращения вычисляется по формуле

Если кривая задана параметрическими уравнениями , то

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.shpori4all. narod.ru/

Дата добавления: 30.07.2003

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.