• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Подсказка по алгебре

Подсказка по алгебре

Формулы сокр. умножения и разложения на множители :

(a± b)² =a² ± 2ab+b²

(a± b)³ =a³ ± 3a² b+3ab² ± b³

a² -b² =(a+b)(a-b)

a³ ± b³ =(a± b)(a² ∓ab+b² ),

(a+b)³ =a³ +b³ +3ab(a+b)

(a-b)³ =a³ -b³ -3ab(a-b)

xn-an=(x-a)(xn-1+axn-2+a² xn-3+...+an-1)

ax² +bx+c=a(x-x1)(x-x2)

где x1 и x2 — корни уравнения

ax² +bx+c=0

Степени и корни :

ap· ag = ap+g

ap:ag=a p-g

(ap)g=a pg

ap /bp = (a/b)p

ap× bp = abp

a0=1; a1=a

a-p = 1/a

pÖ a =b => bp=a

pÖ apÖ b = pÖ ab

Ö a ; a = 0

Квадратное уравнение

ax² +bx+c=0; (a¹ 0)

x1,2= (-b± Ö D)/2a; D=b² -4ac

D>0® x1¹ x2 ;D=0® x1=x2

D<0, корней нет.

Теорема Виета:

x1+x2 = -b/a

x1× x2 = c/a

Приведенное кв. Уравнение:

x² + px+q =0

x1+x2 = -p

x1× x2 = q

Если p=2k (p-четн.)

и x² +2kx+q=0, то x1,2 = -k± Ö (k² -q)

Нахождение длинны отр-ка по его координатам

Ö ((x2-x1)² -(y2-y1)² )

Логарифмы:

loga x = b => ab = x; a>0,a¹ 0

a loga x = x, logaa =1; loga 1 = 0

loga x = b; x = ab

loga b = 1/(log b a)

logaxy = logax + loga y

loga x/y = loga x - loga y

loga xk =k loga x (x >0)

logak x =1/k loga x

loga x = (logc x)/( logca); c>0,c¹ 1

logbx = (logax)/(logab)

Прогрессии

Арифметическая

an = a1 +d(n-1)

Sn = ((2a1+d(n-1))/2)n

Геометрическая

bn = bn-1 × q

b2n = bn-1× bn+1

bn = b1× qn-1

Sn = b1 (1- qn)/(1-q)

S= b1/(1-q)

Тригонометрия.

sin x = a/c

cos x = b/c

tg x = a/b=sinx/cos x

ctg x = b/a = cos x/sin x

sin (p -a ) = sin a

sin (p /2 -a ) = cos a

cos (p /2 -a ) = sin a

cos (a + 2p k) = cos a

sin (a + 2p k) = sin a

tg (a + p k) = tg a

ctg (a + p k) = ctg a

sin² a + cos² a =1

ctg a = cosa / sina , a ¹ p n, nÎ Z

tga × ctga = 1, a ¹ (p n)/2, nÎ Z

1+tg² a = 1/cos² a , a ¹ p (2n+1)/2

1+ ctg² a =1/sin² a , a ¹ p n

Формулы сложения:

sin(x+y) = sin x cos y + cos x sin y

sin (x-y) = sin x cos y - cos x sin y

cos (x+y) = cos x cos y - sin x sin y

cos (x-y) = cos x cos y + sin x sin y

tg(x+y) = (tg x + tg y)/ (1-tg x tg y )

x, y, x + y ¹ p /2 + p n

tg(x-y) = (tg x - tg y)/ (1+tg x tg y)

x, y, x - y ¹ p /2 + p n

Формулы двойного аргумента.

sin 2a = 2sin a cos a

cos 2a = cos² a - sin² a = 2 cos² a - 1 =

= 1-2 sin² a

tg 2a = (2 tga )/ (1-tg² a )

1+ cos a = 2 cos² a /2

1-cosa = 2 sin² a /2

tga = (2 tg (a /2))/(1-tg² (a /2))

Ф-лы половинного аргумента.

sin² a /2 = (1 - cos a )/2

cos² a /2 = (1 + cosa )/2

tg a /2 = sina /(1 + cosa ) = (1-cos a )/sin a

a ¹ p + 2p n, n Î Z

Ф-лы преобразования суммы в произв.

sin x + sin y = 2 sin ((x+y)/2) cos ((x-y)/2)

sin x - sin y = 2 cos ((x+y)/2) sin ((x-y)/2)

cos x + cos y = 2cos (x+y)/2 cos (x-y)/2

cos x - cos y = -2sin (x+y)/2 sin (x-y)/2

Формулы преобр. произв. в сумму

sin x sin y = ½ (cos (x-y) - cos (x+y))

cos x cos y = ½ (cos (x-y)+ cos (x+y))

sin x cos y = ½ (sin (x-y)+ sin (x+y))

Соотнош. между ф-ями

sin x = (2 tg x/2)/(1+tg2x/2)

cos x = (1-tg2 2/x)/ (1+ tg² x/2)

sin2x = (2tgx)/(1+tg2x)

sin² a = 1/(1+ctg² a ) = tg² a /(1+tg² a )

cos² a = 1/(1+tg² a ) = ctg² a / (1+ctg² a )

ctg2a = (ctg² a -1)/ 2ctga

sin3a = 3sina -4sin³ a = 3cos² a sina -sin³ a

cos3a = 4cos³ a -3 cosa= cos³ a -3cosa sin² a

tg3a = (3tga -tg³ a )/(1-3tg² a )

ctg3a = (ctg³ a -3ctga )/(3ctg² a -1)

sin a /2 = ± Ö ((1-cosa )/2)

cos a /2 = ± Ö ((1+cosa )/2)

tga /2 = ± Ö ((1-cosa )/(1+cosa ))=

sina /(1+cosa )=(1-cosa )/sina

ctga /2 = ± Ö ((1+cosa )/(1-cosa ))=

sina /(1-cosa )= (1+cosa )/sina

sin(arcsin a ) = a

cos( arccos a ) = a

tg ( arctg a ) = a

ctg ( arcctg a ) = a

arcsin (sina ) = a ; a Î [-p /2 ; p /2]

arccos(cos a ) = a ; a Î [0 ; p ]

arctg (tg a ) = a ; a Î [-p /2 ; p /2]

arcctg (ctg a ) = a ; a Î [ 0 ; p ]

arcsin(sina )=

1)a - 2p k; a Î [-p /2 +2p k;p /2+2p k]

2) (2k+1)p - a ; a Î [p /2+2p k;3p /2+2p k]

arccos (cosa ) =

1) a -2p k ; a Î [2p k;(2k+1)p ]

2) 2p k-a ; a Î [(2k-1)p ; 2p k]

arctg(tga )= a -p k

a Î (-p /2 +p k;p /2+p k)

arcctg(ctga ) = a -p k

a Î (p k; (k+1)p )

arcsina = -arcsin (-a )= p /2-arccosa =

= arctg a /Ö (1-a ² )

arccosa = p -arccos(-a )=p /2-arcsin a =

= arc ctga /Ö (1-a ² )

arctga =-arctg(-a ) = p /2 -arcctga =

= arcsin a /Ö (1+a ² )

arc ctg a = p -arc cctg(-a ) =

= arc cos a /Ö (1-a ² )

arctg a = arc ctg1/a =

= arcsin a /Ö (1+a ² )= arccos1/Ö (1+a ² )

arcsin a + arccos = p /2

arcctg a + arctga = p /2

Тригонометрические уравнения

sin x = m ; |m| = 1

x = (-1)n arcsin m + p k, kÎ Z

sin x =1 sin x = 0

x = p /2 + 2p k x = p k

sin x = -1

x = -p /2 + 2 p k

cos x = m; |m| = 1

x = ± arccos m + 2p k

cos x = 1 cos x = 0

x = 2p k x = p /2+p k

cos x = -1

x = p + 2p k

tg x = m

x = arctg m + p k

ctg x = m

x = arcctg m +p k

sin x/2 = 2t/(1+t2); t - tg

cos x/2 = (1-t² )/(1+t² )

Показательные уравнения.

Неравенства: Если af(x)>(<) aа(ч)

1) a>1, то знак не меняеться.

2) a<1, то знак меняется.

Логарифмы : неравенства:

logaf(x) >(<) log a j (x)

1. a>1, то : f(x) >0

j (x)>0

f(x)>j (x)

2. 0<a<1, то: f(x) >0

j (x)>0

f(x)<j (x)

3. log f(x) j (x) = a

ОДЗ: j (x) > 0

f(x) >0

f(x ) ¹ 1

Тригонометрия:

1. Разложение на множители:

sin 2x - Ö 3 cos x = 0

2sin x cos x -Ö 3 cos x = 0

cos x(2 sin x - Ö 3) = 0

....

2. Решения заменой ....

3.sin² x - sin 2x + 3 cos² x =2

sin² x - 2 sin x cos x + 3 cos ² x = 2 sin² x + cos² x

Дальше пишеться если sin x = 0, то и cos x = 0,

а такое невозможно, => можно поделить на cos x

Тригонометрические нер-ва :

sin a ³ m

2p k+a 1 = a = a 2+ 2p k

2p k+a 2 = a = (a 1+2p )+ 2p k

Пример:

I cos (p /8+x) < Ö 3/2

p k+ 5p /6< p /8 +x< 7p /6 + 2p k

2p k+ 17p /24 < x< p /24+2p k;;;;

II sin a = 1/2

2p k +5p /6 = a = 13p /6 + 2p k

cos a ³ (= ) m

2p k + a 1 < a < a 2+2 p k

2p k+a 2< a < (a 1+2p ) + 2p k

cos a ³ - Ö 2/2

2p k+5p /4 = a = 11p /4 +2p k

tg a ³ (= ) m

p k+ arctg m = a = arctg m + p k

ctg ³ (= ) m

p k+arcctg m < a < p +p k

Производная:

(xn)’ = n× xn-1

(ax)’ = ax× ln a

(lg ax )’= 1/(x× ln a)

(sin x)’ = cos x

(cos x)’ = -sin x

(tg x)’ = 1/cos² x

(ctg x)’ = - 1/sin² x

(arcsin x)’ = 1/ Ö (1-x² )

(arccos x)’ = - 1/ Ö (1-x² )

(arctg x)’ = 1/ Ö (1+x² )

(arcctg x)’ = - 1/ Ö (1+x² )

Св-ва:

(u × v)’ = u’× v + u× v’

(u/v)’ = (u’v - uv’)/ v²

Уравнение касательной к граф.

y = f(x0)+ f ’(x0)(x-x0)

уравнение к касательной к графику в точке x

1. Найти производную

2. Угловой коофициент k = производная в данной точке x

3. Подставим X0, f(x0), f ‘ (x0), выразим х

Интегралы :

ò xn dx = xn+1/(n+1) + c

ò ax dx = ax/ln a + c

ò ex dx = ex + c

ò cos x dx = sin x + cos

ò sin x dx = - cos x + c

ò 1/x dx = ln|x| + c

ò 1/cos² x = tg x + c

ò 1/sin² x = - ctg x + c

ò 1/Ö (1-x² ) dx = arcsin x +c

ò 1/Ö (1-x² ) dx = - arccos x +c

ò 1/1+ x² dx = arctg x + c

ò 1/1+ x² dx = - arcctg x + c

Площадь криволенейной трапеции.

Геометрия

Треугольники

a + b + g =180

Теорема синусов

a² = b² +c² - 2bc cos a

b² = a² +c² - 2ac cos b

c² = a² + b² - 2ab cos g

Медиана дели треуг. на два равновеликих. Медиана делит

противопол. сторону напополам.

Биссектриса - угол.

Высота падает на пр. сторону

под прямым углом.

Формула Герона :

p=½ (a+b+c)

S = Ö p(p-a)(p-b)(p-c)

S = ½ ab sin a

Sравн.=(a² Ö 3)/4

S = bh/2

S=abc/4R

S=pr

Трапеция.

S = (a+b)/2× h

Круг

S= p R²

Sсектора=(p R² a )/360

Стереометрия

Параллепипед

V=Sосн× Р

Прямоугольный

V=abc

Пирамида

V =1/3Sосн.× H

Sполн.= Sбок.+ Sосн.

Усеченная :

H .

V = 3 (S1+S2+Ö S1S2)

S1 и S2 — площади осн.

Sполн.=Sбок.+S1+S2

Конус

V=1/3 p R² H

Sбок. =p Rl

Sбок.= p R(R+1)

Усеченный

Sбок.= p l(R1+R2)

V=1/3p H(R12+R1R2+R22)

Призма

V=Sосн.× H

прямая: Sбок.=Pосн.× H

Sполн.=Sбок+2Sосн.

наклонная :

Sбок.=Pпс× a

V = Sпс× a, а -бок. ребро.

Pпс — периметр

Sпс — пл. перпенд. сечения

Цилиндр.

V=p R² H ; Sбок.= 2p RH

Sполн.=2p R(H+R)

Sбок.= 2p RH

Сфера и шар .

V = 4/3 p R³ - шар

S = 4p R³ - сфера

Шаровой сектор

V = 2/3 p R³ H

H - высота сегм.

Шаровой сегмент

V=p H² (R-H/3)

S=2p RH

град

       

0°

30°

45°

60°

90°

120°

135°

 

180°

a

-p /2

-p /3

-p /4

-p /6

0

p /6

p /4

p /3

p /2

2p /3

3p /4

3p /6

p

sina

-1

-Ö 3/2

-Ö 2/2

- ½

0

½

Ö 2/2

Ö 3/2

1

   

- ½

0

cosa

       

1

Ö 3/2

Ö 2/2

½

0

- ½

-Ö 2/2

- Ö 3/2

-1

tga

Ï

-Ö 3

-1

-1/Ö 3

0

1/Ö 3

1

Ö 3

Î

-Ö 3

-1

 

0

ctga

       

---

Ö 3

1

1/Ö 3

0

-1/Ö 3

-1

 

--


n

2

3

4

5

6

7

8

9

2

4

9

16

25

36

49

64

81

3

8

27

64

125

216

343

512

729

4

16

81

256

625

1296

2401

4096

6561

5

32

243

1024

3125

7776

16807

32768

59049

6

64

729

4096

15625

46656

7

128

2181

8

256

6561


 

-a

p -a

p +a

p /2-a

p /2+a

3p /2 - a

3p /2+a

sin

-sina

sina

-sina

cosa

cosa

-cosa

-cosa

cos

cosa

-cosa

-cosa

sina

-sina

-sina

sina

tg

-tga

-tga

tga

ctga

-ctga

ctga

-ctga

ctg

-ctga

-ctga

ctga

tga

-tga

tga

-tga

s

Дата добавления: 23.04.2001

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.