• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Информатика, программирование
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Задачи по моделированию с решениями

Задачи по моделированию с решениями

Задача №1.

Необходимо построить рекуррентный алгоритм моделирования, нормального случайного  процесса, с заданной корреляционной функцией.

Метод решения, на основе факторизации.

Дано.

R(t) =;

  

при  ;

Корреляционная функция стационарного, случайного процесса с рациональным спектром, имеет вид:

R()=;

 следовательно система.

Корреляционная  функция соответствующего дискретного процесса равна:

R[n]=

где    ;  ;

где ;  fb= fb=20; 

Отсюда найдем:

; ; ; ;

Не нарушая общности рассуждений, положим , тогда R[0]=1. Запишем функцию R[n] для n0 в комплексной форме:

   ;

  ;  ;  ;

Отсюда

;

Следовательно,  спектральная функция F(z) в соответствии имеет вид.

;

После приведения к общему знаменателю и приведения подобных членов получим.

;

где

  

,          ;

Знаменатель F(z) представляет собой произведение двух сомножителей требуемой формы, т.е. в факторизации знаменателя нет надобности. Это всегда будет иметь место при использовании такой последовательности подготовительной работы.

  Для факторизации числителя найдем его корни:

;

;

В данном случае ввиду симметрии уравнения

;

анализ корней для уяснения величины их модуля не потребуется, и в качестве корня  окончательного выражения вида брать любой из корней . В этом можно убедится, подставив в уравнение вместо  значения корней. Действительно, уравнение обращается в тождество при .

Таким образом, дискретная передаточная функция формирующего фильтра и рекуррентный алгоритм для моделирования случайного процесса с корреляционной функцией  имеют соответствующий вид

                          ;

  ; где

   ,  ;

  ; ;

  ;

  ; ;

           .

Задача №2.

Дана структура нелинейного фильтра, схема которого представлена выше.

Схема измерительной структуры представлена выше.

 

  ;

 ;

 

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.cooldoclad.narod.ru/

Дата добавления: 13.08.2003

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.