• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Теорема Штольца

Теорема Штольца

Содержание работы:

  1. Формулировка и доказательство теоремы Штольца.
  2. Применение теоремы Штольца:
    1. ;
    2. нахождение предела “среднего арифметического” первых n значений варианты ;
    3. ;
    4. .
  3. Применение теоремы Штольца к нахождению некоторых пределов отношения последовательностей.
  4. Нахождение некоторых пределов отношения функций с помощью теоремы Штольца.

Для определения пределов неопределенных выражений типа часто бывает полезна следующая теорема, принадлежащая Штольцу.

Пусть варианта , причем – хотя бы начиная с некоторого листа – с возрастанием n и возрастает: . Тогда =,

Если только существует предел справа (конечный или даже бесконечный).

Допустим, что этот предел равен конечному числу :

.

Тогда по любому заданному найдется такой номер N, что для n>N будет

или

.

Значит, какое бы n>N ни взять, все дроби , , …, , лежат между этими границами. Так как знаменатели их, ввиду возрастания yn вместе с номером n, положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при n>N

.

Напишем теперь тождество:

,

откуда

.

Второе слагаемое справа при n>N становится <; первое же слагаемое, ввиду того, что , также будет <, скажем, для n>N’. Если при этом взять N’>N, то для n>N’, очевидно, , что и доказывает наше утверждение.

Примеры:

  1. Пусть, например, . Отсюда, прежде всего вытекает, что (для достаточно больших n) , следовательно, вместе с yn и xn, причем варианта xn возрастает с возрастанием номера n. В таком случае, доказанную теорему можно применить к обратному отношению

    (ибо здесь предел уже конечен), откуда и следует, что , что и требовалось доказать.

  2. При а>1

    Этот результат с помощью теоремы Штольца получается сразу:

  3. Применим теорему Штольца к доказательству следующего интересного предложения:

    Если варианта anимеет предел (конечный или бесконечный), то этот же предел имеет и варианта

    (“среднее арифметическое” первых n значений варианты аn).

    Действительно, полагая в теореме Штольца

    Xn=a1+a2+…+an, yn=n,

    Имеем:

    Например, если мы знаем, что ,

    то и

  4. Рассмотрим теперь варианту (считая k-натуральным)

    ,

    которая представляет неопределённость вида .

    Полагая в теореме Штольца

    xn=1k+2k+…+nk, yn=nk+1,

    будем иметь

    .

    Но

    (n-1)k+1=nk+1-(k+1)nk+… ,

    так что

    nk+1-(n-1)k+1=(k+1)nk+…

    и

    .

  5. Определим предел варианты

,

представляющей в первой форме неопределенность вида , а во второй – вида . Произведя вычитание дробей, получим на этот раз неопределенное выражение вида :

.

Полагая xn равным числителю этой дроби, а yn – знаменателю, применим еще раз ту же теорему. Получим

.

Но ,

а ,

так что, окончательно,

.

Пример 1.

====== ===.

Пример 2.

=

==

==

==

==

==

=.

Пример 3.

=

=.

Теорема Штольца справедлива для последовательностей, но т.к. последовательности есть частный случай функций, то эту теорему можно обобщить для функций.

Теорема.

Пусть функция , причем, начиная с некоторой xk, g(xk+1)>g(xk), т.е. функция возрастающая.

Тогда ,

если только существует предел справа конечный или бесконечный.

Доказательство:

Допустим, что этот предел равен конечному числу k

.

Тогда, по определению предела

или

.

Значит, какой бы ни взять, все дроби

, , …,

лежат между этими границами. Так как знаменатели их, ввиду возрастания g(xn) вместе с x(n), положительны, то между теми же границами содержится и дробь , числитель которой есть сумма всех числителей, написанных выше дробей, а знаменатель – сумма всех знаменателей. Итак, при

.

Напишем тождество(которое легко проверить):

,

Откуда

.

Второе слагаемое справа при становится ; первое же слагаемое, ввиду того, что , так же будет , скажем, для . Если при этом взять , то для , очевидно , что и доказывает теорему.

Примеры:

Найти следующие пределы:

  1. очевидна неопределенность

    ===2

  2. неопределенность

    ====0

  3. неопределенность

===

Литература:

  1. “Задачи и упражнения по математическому анализу” под редакцией Б.П.Демидовича. Издательство “Наука”, Москва 1996г.
  2. Г.М.Фихтенгольц “Курс дифференциального и интегрального исчисления” Физматгиз 1962г. Москва.

Дата добавления: 25.04.2001

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.