• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

Краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

Введение

В ряде случаев оказывается невозможным или неприемлемым получение аналитического решения поставленной задачи. Использование основных теорем и положений анализа позволяет получить качественную картину поведения функции решения в заданной области, оценить скорость сходимости решения. Такой подход широко реализуется в областях техники, где получение результата необходимо с заданной точностью.

1.Постановка задачи

В дипломной работе рассматривается задача:

(З)

0.

Требуется привести пример оценки решения задачи (З) в области , и исследовать полученную оценку при

2. Оценочный анализ решения задачи.

Оценка решения задачи (З) основывается на принципе максимума для уравнения теплопроводности : “Всякое решение уравнения в прямоугольнике , непрерывное вплоть до границы, принимает свои наибольшее и наименьшее значения на нижних или на боковых его границах” [2].

2.1. Оценка решения сверху.

В области t=t , x= рассмотрим решение задачи :

, V(0,x) = ( x ), , (1)

это решение имеет вид [1]:

v (t, x) = . (2)

Зафиксируем некоторое и перейдем к исходной системе координат, тогда (2) в системе t=t, x= будет выглядеть так:

V(t, x) = (2’)

Из принципа максимума [2] заключаем, что:

U( t, x ) V( t, x ). (3)

Таким образом задача сводится к оценке интеграла (2).

2.2. Оценка решения в виде интеграла

Разобьем интервал < x на две части и , тогда интеграл (2’) запишется в виде:

V( t, x ) = . (*)

Исследуем знак подинтегрального выражения, принимая во внимание, то что :

; (а)

;

;

где .

После проведенного исследования видно, что

Использовав известное разложение ,

где Z 0, , заменим экспоненты во втором интеграле рядами:

(а) ;

(б) .

В результате получим :

Здесь:

, , (4.1)

, . (4.2)

Запишем неравенство (3) в виде, принимая во внимание только одно слагаемое суммы ряда:

m=1,

U(t, x) . (5)

Выше приведенная оценка не отражает качественной картины и может быть использована при дальнейших исследованиях задач подобного вида. ( т .к .фиксированно)

Рассмотрим другую возможность оценки неравенства (3).

пусть

(т.е. финитна), в соответствии с принципом максимума:

, (3’)

при

где W- решение краевой задачи (З) с начальными условиями:

Аналогично, как и выше

здесь:

Таким образом,

(используем разложение в ряд Тейлора)

В итоге,

(5.1)

Рассмотрим два случая:

а) Пусть

,

тогда в правой части неравенства (5.1) третье и четвертое (3,4) слагаемые стремятся к нулю быстрее любой степени ,

поэтому (5.1) можно переписать как:

(5.2)

б) Пусть тогда:

где

В результате получаем:

(5.3)

2.3. Выбор интервала ( ) и оценка погрешности

Зададим произвольно некоторую константу >0, потребовав чтобы в (5)

<.

при .

Неравенство (5) можно только усилить, если

< (6)

Рассмотрим общий вид :

; (7)

, (7.1)

b=x ( k=1 ) , b=2(k=2) оценка (7.1) эквивалентна системе неравенств:

,

откуда:

. (8)

Т. к. в работе исследуется поведение неравенства (3) при то принимаем что для некоторого :

. (9)

3. Формулировка результата в виде теоремы

Обобщая результаты всей работы в целом можно сформулировать следующие теоремы:

1. Пусть для уравнения теплопроводности имеет место задача

(З)

- гладкая, непрерывно - дифференцируемая функция на ,а функция ограничена на R : .

Тогда для любого сколь малого числа можно указать число

,

такое что имеет место следующая оценка “сверху” решения задачи (З):

Раскрыв квадратные скобки, получим:

.

2.Пусть в имеет место задача (З), - монотонная, неограниченная, возрастающая функция,

тогда:

  1. если , то

2) если то

Замечанние:видно, что оценку полученную в теореме 2 можно получить и при более слабых ограничениях

4. Примеры

Пусть ,

Заключение

В дипломной работе произведена оценка решения “сверху” для уравнения теплопроводности с движущей границей по заданному закону. Аналогично, можно получить оценку решения “снизу”. Для этого нужно рассмотреть ступенчатую область, в которой для каждой ступеньки решение может быть получено согласно 2.1 (2) . Число таких ступенчатых областей необходимо выбрать таким образом, чтобы оценка полученная снизу была сравнима с полученной выше оценкой.

СПИСОК ЛИТЕРАТУРЫ

  1. А. Н. Тихонов, А. А. Самарский, Уравнения математической физики. Изд. “Наука”, М. 1966 (с. 230 -233);
  2. С. К. Годунов, Уравнения математической физики. Изд. “Наука”, М. 1973 . 33-34);
  3. Л. Д. Кудрявцев, Краткий курс математического анализа. Изд. “Наука”, М. 1989.

Дата добавления: 24.04.2001

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.