• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Расчет поляризованности и плотности связанного заряда

М.И. Векслер, Г.Г. Зегря

Такие задачи могут быть решены как с привлечением теоремы Гаусса, так и посредством интегрирования уравнения Пуассона. Уравнение Пуассона более удобно, если где-либо (т.е. на каких-либо поверхностях) требуется обеспечить наперед заданные величины потенциала. Теорема Гаусса дает преимущество, если в задаче заданы только заряды. Если потенциал уже задан формулой, то , а далее просто используется уравнение Максвелла для нахождения заряда.

Задача. φ(r) = ar3+b внутри шара радиуса R проницаемости ε. Найти ρ, ρ ', σ '.

Решение: Поле направлено радиально от центра шара; внутри оно равно

а вне шара не потребуется для решения. (Но, в принципе, его можно найти как Er = Q/(4πε0r2) после нахождения ρ и полного заряда ). Плотность заряда ρ получаем из уравнения Максвелла:

ρ(r)

 =

 =

Для нахождения ρ ' и σ ' потребуется поляризованность внутри шара:

Pr = ε0(ε–1)Er = –3aε0(ε–1)r2

Связанные заряды равны:

σ '|r = R = Pr|r = R– = –3aε0(ε–1)r2

Задача. Пластина толщины 2a проницаемости ε заряжена как ρ = α x2. Положив φ|x = 0 = 0, написать φ(x), найти ρ ' и σ '.

Решение: Хотя использование уравнения Пуассона при решении данной задачи вполне возможно, более удобным представляется применение теоремы Гаусса к цилиндрической поверхности, занимающей область (–∞... x) вдоль оси x. Таким способом аналогичная задача рассматривалась ранее для случая ε = 1. Изменения требуются в момент перехода от Dx к Ex в области –a<x<a:

Теперь можно найти φ c учетом условия φ|x = 0 = 0, применяя формулу

верную для любого x (и больше, и меньше нуля). Соответственно, для каждого из трех участков, на которых найдено Ex, получаем:

φ(x)

 =

 =

 =

Для вычисления плотностей связанного заряда нам не нужен потенциал, но требуется поляризованность внутри пластины (вне она, естественно, равна нулю):

Величины ρ ' и σ ' равны:

σ '|x = –a

 =

σ '|x = a

 =

Получилось что σ '|x = –a = σ '|x = a, что вполне естественно, ввиду симметрии системы относительно плоскости x = 0.

Задача. В плоский конденсатор при а) поддерживаемом постоянным напряжении б) неизменном заряде обкладок - параллельно обкладкам ввели пластину с проницаемостью ε, которая заняла η-ю часть зазора. Найти σ ' на гранях пластины. Изначально поле составляло E0.

Ответ: a) ; б) Примечание: в процессе решения удобно временно ввести расстояние между обкладками d и разность потенциалов U (для "а") или заряд обкладки σ (для "б"). Естественно, введенные U (σ) должны быть согласованы с известным E0.

Задача. Внутри заземленного цилиндра радиуса R - равномерно заряженный (ρ0) диэлектрик ε = 1+α r. Найти φ(r), ρ', σ'.

Решение: Применяем уравнение Пуассона, так как у нас есть требование на потенциал: φ|r = R = 0:

 =

 =

 =

 =

Здесь A = 0, так как иначе поле, то есть –dφ/dr, оказывается неограниченным в точке r = 0. Потенциал находим интегрированием dφ/dr в пределах от R до r:

φ

 =

 =

 =

Найдем еще поляризованность:

Теперь получаем связанный поверхностный заряд

и связанный объемный заряд:

Задача. Внутри заземленного шара радиуса R - равномерно заряженный (ρ0) диэлектрик ε = 1+α r. Найти φ(r), ρ', σ'.

Ответ: ,

.

Список литературы

1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.

2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.

3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.

Для подготовки данной работы были использованы материалы с сайта http://edu.ioffe.ru/r

Дата добавления: 18.05.2011

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.