Карл-Густав Якоб Якоби
С.И. Алешников
В статье представлена краткая биография выдающегося немецкого математика Карла-Густава Якоба Якоби, научная деятельность которого тесно связана с Кёнигсбергским университетом — Альбертиной. Дан обзор его работ в области теории функций, теории чисел и алгебраической геометрии, способствовавших становлению современных математических методов защиты информации.
Он проник почти во все области разросшейся за 2000 лет до невероятных размеров науки. Всюду, куда устремлялся его творческий дух, им были получены важные и глубокие результаты, введены новые основополагающие идеи, математическая изощренность поднята на более высокую ступень. Его научная деятельность продолжалась чуть более четверти века — относительно небольшой срок в сравнении с предыдущими математиками первого ранга; всего лишь половину того времени, в течение которого творил Эйлер, один из величайших математиков всех времен. Тем не менее, он был почти также многосторонен и продуктивен, как и сам Эйлер. Как и Эйлер, он использовал все средства современной ему науки, ежеминутно они были в его распоряжении.
Так говорил Густав Дирихле
(Gustav Dirichlet), выдающийся немецкий математик, на ежегодном заседании Прусской
академии наук 1 июля
К.-Г.Я. Якоби родился 10
декабря
Свои первые познания в
математике и языках Карл приобрел под руководством своего дяди Ф.А. Лемана (F.A.
Lehmann), бывшего его единственным учителем на протяжении пяти лет. В возрасте
неполных 12 лет в ноябре
В
Первоначально Якоби увлекся древними языками и в течение некоторого времени был активным участником университетского семинара по классической филологии, руководимого профессором Бёком (Boeckh). Бытовавший в этих кругах идеал высокой чистой научной культуры и выработанная здесь система преподавания сыграли определяющую роль в его дальнейшей педагогической деятельности. Его знания языков, особенно древнегреческого, математики и истории, характеризовались преподавателями как отличные и весьма основательные. Его называли «универсальным умом, обладающим необычайными способностями и высоким духом, охватывающим и понимающим все без устали». Ему не хватало обычных университетских лекций, и тогда его учителями стали Эйлер, Гаусс, Лагранж, Лаплас, работы которых Якоби изучал. Особенно его восхищали труды Гаусса. В 20-летнем возрасте по окончании университета с большим успехом он выдержал государственный экзамен и тут же начал работу над докторской диссертацией.
Осенью
В Кёнигсберге в течение
семнадцати лет Якоби развил грандиозную деятельность сначала как доцент, а
потом как экстраординарный (
11-го сентября 1831 Якоби сочетался браком с Марией Швинк (Marie Schwink), дочерью крупного торговца из Кёнигсберга. Они имели трех дочерей и пятерых сыновей.
Якоби обладал не только тягой к чисто научному познанию, но и живой потребностью изложить познанное. Эта наклонность воздействовать на других выразилась в виде блестящего педагогического таланта. Существенную часть своего времени он тратил на образование своих учеников. Отличительной чертой его лекций была живая связь собственных научных исследований с учебным материалом. В лекциях не было ничего завершенного. Поставленные им исследовательские задачи разжигали интерес слушателей. Он вынуждал их к напряженной умственной работе. Этой же цели служил и физико-математический семинар, основанный совместно с Нейманом при поддержке Бесселя, на котором студенты занимались собственной научной работой. Фактически это была реформа методики преподавания. Семинар стал фундаментом так называемой кёнигсбергской научной школы и просуществовал более 100 лет.
Якоби был предназначен для того, чтобы создать большую школу, которой суждено было долгое процветание. Так называемая «кёнигсбергская школа», основанная Якоби и Францем Нейманом, была первым подобного рода явлением в Германии, приобретшим длительное влияние. Кёнигсбергский университет превратился в центр точных наук. Мощный импульс, исходивший от Якоби, распространялся далеко за пределы Кёнигсберга. Линдеман (Lindemann) говорил «о длительном времени возрождения математики в Германии, которым мы обязаны кёнигсбергской школе». Все германские университеты испытали на себе ее воздействие. В Германии непосредственными учениками Якоби были такие известные ученые, как Кирхгофф, Клебш и Гессе. Более того, в то время почти все кафедры математики и математической физики немецких высших учебных заведений занимали питомцы кёнигсбергской школы.
Влияние Якоби
распространялось и за пределами Германии. Ведущие математики Франции 40-х годов
XVIII в. Эрмит и Лиувилль, Кэли в Англии считали себя учениками Якоби. Якоби
был членом Лондонского Королевского общества, членом-корреспондентом Мадридской
и Парижской академий. В
Исключительно энергичная
деятельность Якоби в Кёнигсберге привела его в
В последние годы жизни
Якоби увлекся политической деятельностью. Летом
Якоби проводил
исследования почти во всех областях математики. Его первой публикацией была
диссертация. Его последняя публикация датирована 10 января
Он существенно продвинулся в решении задачи деления круга и ее приложений к теории чисел, в частности к теории кубических и биквадратичных вычетов. Ему принадлежит обобщение символа Лежандра и формулировки закона взаимности для степенных вычетов пятой и восьмой степеней. Суммы Якоби служат важнейшим инструментом исследования в теории чисел и арифметической геометрии до сегодняшнего дня.
Возникающие в вариационном исчислении дифференциальные уравнения носят имя Якоби. Он ввел и исследовал класс ортогональных многочленов, являющихся обобщением многочленов Лежандра — так называемые многочлены Якоби, и применил их к решению гипергеометрических дифференциальных уравнений. Ему принадлежат методы интегрирования системы линейных дифференциальных уравнений в частных производных первого порядка. Его имя носит многообразие, обладающее структурой группы, соответствующее всякой алгебраической кривой. Он ввел в употребление функциональные определители — якобианы — и указал на их роль при замене переменных в кратных интегралах и при решении уравнений с частными производными. Он открыл закон инерции квадратичных форм.
В области астрономии он провел численные исследования возмущений эллиптических орбит планет, продвинулся в решении задачи трех тел в небесной механике, указав для нее ряд новых методов, ввел канонические координаты, носящие его имя, доказал теорему исключения узлов, внес существенный вклад в решение задачи определения формы небесного тела. После смерти Бесселя он оказался его научным наследником, рассчитав движение планеты Нептун и тем самым предвосхитив ее открытие.
В физике он создал теорию Гамильтона-Якоби, оказавшуюся весьма плодотворной для дальнейшего развития механики. Он применил эллиптические функции в теории волчка и для расчета геодезических линий на эллипсоиде. Ему принадлежит доказательство теоремы Якоби-Пуассона о выводе новых интегралов из уже известных для произвольной системы дифференциальных уравнений механики. Он сформулировал принцип наименьшего действия в аналитической механике. Якоби отличала тонкая физическая интуиция. Он был единственным из ведущих ученых того времени, сумевшим понять работу Гельмгольца «О возникновении силы».
Во время путешествия по
Италии в
В последнюю треть XX века математика приобрела новое лицо. Самые абстрактные идеи и теории, возникшие как порождение чистой логики, неожиданно оказались в центре новых приложений. Более того, они оказались одной из основных движущих сил развития этих приложений. Теория эллиптических функций и теория тета-функций, суммы Якоби и круговые поля, якобианы алгебраических кривых — это весьма неполный перечень созданного Якоби, что спустя более 150 лет со времени их открытия составило математическую основу современных методов защиты информации. В этом и состоит, видимо, печать гения.
Список литературы
1. Дирихле П.Г.Л. Карл
Густав Яков Якоби: Биографический очерк, составленный Лежьеном Дирихле для
своей речи в память Якоби, произнесенной в заседании Берлинской академии наук 1
июля
2. Лавринович К.К. Альбертина: Очерки истории Кёнигсбергского университета. К 450-летию со времени основания / Калинингр. гос. ун-т. — Калининград: Кн. изд-во, 1995.
3. Königsberger L. Carl Gustav Jacob Jacobi. Festschrift zur der
hundertsten Wiederkehr seines Geburtstages. -
4. Königsberger L. Carl Gustav Jacob Jacobi. Rede zu der von dem
internationalen Mathematiker-Kongress in
5. Pieper H. Carl Gustav Jacob Jacobi (1804-1851) // Die Albertus-Universität zu Königsberg und ihre
Professoren: aus Anlaß der Gründung der Albertus-Universität
vor 450 Jahren / hrsg. von Dietrich Rauschning; Donata v. Nerée. -
Для подготовки данной работы были использованы материалы с сайта http://old.albertina.ru/
Дата добавления: 07.04.2010