• Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Рефераты
Главная → Рефераты → Математика, физика, астрономия
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Поиск по рефератам и авторским статьям

Современные качественные исследования устойчивости

И.А. Колесникова

Российский университет дружбы народов

О вариационности некоторых ДУЧП  с отклоняющимися аргументами

Исследована задача существования вариационных принципов для дифференциальных уравнений с отклоняющимися аргументами вида  


1. Постановка задачи. Пусть N – оператор, заданный в области D(N) линейного нормированного пространства U над полем действительных чисел R, а область значений R(N)  принадлежит линейному нормированному пространству V над полем R, т.е.


В дальнейшем всюду предполагается, что в каждой точке

 существует производная Гато  оператора N, определяемая формулой

                              (1)

Решается задача существования вариационных принципов для заданных ДУЧП с отклоняющимися аргументами вида

       (2)

где -ограниченная область в, с кусочногладкой границей

в предположении достаточной гладкости всех рассматриваемых функций.

 Зададим область определения оператора N равенством

    (3)

Здесь - заданные функции,  - неизвестная функция. Числа  зависят соответственно от . Если - четны, то При нечетном  полагаем    

Обозначим

Введем классическую билинейную форму вида где                            (4)


Будем говорить, что уравнение (2) допускает прямую вариационную формулировку на множестве D(N), относительно билинейной формы (4), если существует функционал FN: D(FN )=D(N)—>R такой, что

   

Функционал FN называется потенциалом оператора N, а N – градиентом функционала FN. Записывают N=gradфFN. Оператор N называется потенциальным на множестве D(N) относительно Ф.

Обозначая через  замыкание области , будем предполагать, что - выпуклое множество, , для любых фиксированных элементов функция

Как известно [2., стр.15], необходимым и достаточным условием потенциальности оператора N на множестве D(N) относительно заданной формы является условие симметричности



Искомый функционал в этом случае имеет вид:

где F0 произвольный фиксированный элемент из R.

Для уравнения вида (2) устанавливается, что существует вариационный принцип в указанном выше смысле тогда и только тогда, когда справедлива

Теорема 1. Для потенциальности оператора (2) на множестве (3) относительно билинейной формы (4) необходимо и достаточно, чтобы выполнялись условия


Современные качественные исследования устойчивости

Доказательство теоремы может быть проведено по схеме изложенной в работе [1, стр.43].

2.Примеры.


А. Рассматривается дифференциальное уравнение с отклоняющимися аргументами вида (частный случай уравнения (2))


с граничными условиями

Для решения вопроса о вариационности задачи (7),(8) воспользуемся теоремой 1. Из условий (6) получим


Отсюда заключаем, что в случае потенциальности рассматриваемого оператора коэффициенты a-1, a 0 ,a 1 могут зависеть только от x, а b-1, b0, b1 – только от t.

С учетом условий (9), уравнение (7) может быть записано в виде


Таким образом, уравнение (7’) c граничными условиями (8) допускает вариационную формулировку.

Соответствующий функционал имеет вид


В. Рассматривается уравнение

где a,b – const, u – неизвестная функция с граничными условиями


Для оператора задачи(10),(11) условия (6) не выполняются. В этой связи рассматривается следующая задача.

Найти функцию [2] М=М(x,t,u,ui) в Ω для любого u из D(N) и соответствующий функционал F[u] так, что


Используя условия (6), находим вариационный множитель М=еu(x,t). Тогда получим, что оператор вида

 


является потенциальным.

Соответствующее эквивалентное уравнение будет иметь вид:


 Таким образом, задача (13’), (11) допускает вариационную формулировку с функционалом

Список литературы

 [1] Савчин В.М. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами.// XXXII Научная конференция факультета физико-математических и естественных наук. Тезисы докладов.1996г.С. 25.

[2] Филиппов В.М., Савчин В.М., Шорохов С.Г., Вариационные принципы для непотенциальных операторов. Итоги науки и техники. Современные проблемы математики. Новейшие достижения. Том 40.М.1992.

Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua

Дата добавления: 05.03.2007

База рефератов на портале KM.RU существует с 1999 года. Она пополнялась не только готовыми рефератами, докладами, курсовыми, но и авторскими публикациями, чтобы учащиеся могли использовать их и цитировать при самостоятельном написании работ.


Это популяризирует авторские исследования и научные изыскания, что и является целью работы истинного ученого или публициста. Таким образом, наша база - электронная библиотека, созданная в помощь студентам и школьникам.


Уважаемые авторы! Если Вы все же возражаете против размещения Вашей публикации или хотите внести коррективы, напишите нам на почту info@corp.km.ru, мы незамедлительно выполним Вашу просьбу или требование.


официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.