]]>
]]>
  • Новости
  • Темы
    • Экономика
    • Здоровье
    • Авто
    • Наука и техника
    • Недвижимость
    • Туризм
    • Спорт
    • Кино
    • Музыка
    • Стиль
  • Спецпроекты
  • Телевидение
  • Знания
    • Энциклопедия
    • Библия
    • Коран
    • История
    • Книги
    • Наука
    • Детям
    • КМ школа
    • Школьный клуб
    • Рефераты
    • Праздники
    • Гороскопы
    • Рецепты
  • Сервисы
    • Погода
    • Курсы валют
    • ТВ-программа
    • Перевод единиц
    • Таблица Менделеева
    • Разница во времени
Ограничение по возрасту 12
KM.RU
Наука и техника
Главная → Наука и техника → Наука
Версия для печати
  • Новости
  • В России
  • В мире
  • Экономика
  • Наука и техника
    • Наука
    • Технологии
    • История
    • Энциклопедия
    • Игры
  • Недвижимость
  • Авто
  • Туризм
  • Здоровье
  • Спорт
  • Музыка
  • Кино
  • Стиль
  • Телевидение
  • Спецпроекты
  • Книги
  • Telegram-канал

Ученые нашли молекулу, которая поможет печатать микросхемы из пластика

13:13 13.07.2016

Ученые из МГУ совместно с коллегами из Германии выяснили, что молекула [3]-радиален может использоваться при создании органических полупроводников


Изображение Дмитрий Иванов с сайта msu.ru

Группе исследователей из МГУ имени М.В.Ломоносова в сотрудничестве с немецкими коллегами из Института полимерных исследований в Дрездене (Институт Лейбница) удалось найти молекулу, которая, по их мнению, может дать толчок развитию органической электроники.

Результаты своей работы ученые опубликовали в журнале Advanced Materials.

Ученые из МГУ совместно с коллегами из Германии выяснили, что молекула под названием [3]-радиален, известная науке уже около 30 лет, может использоваться при создании органических полупроводников. Дмитрий Иванов, заведующий лабораторией инженерного материаловедения при факультете фундаментальной физико-химической инженерии МГУ, считает, что достижение ученых значительно поможет развитию органической электроники и, в частности, созданию органических светодиодов и новых классов органических солнечных батарей.

Органическая или «пластиковая» электроника — сравнительно молодое научное направление, возникшее около 15-20 лет назад. Его цель — разработка электронных устройств на органических материалах. Такая электроника пока уступает стандартной кремниевой в быстродействии, она также пока менее долговечна. Но у нее есть и преимущества — легкость, тонкость, гибкость, прозрачность. И самое главное — пластиковая электроника значительно дешевле кремниевой. К основным применениям органической электроники следует отнести создание солнечных батарей, намного более дешевых, чем батареи на кремнии (высокая стоимость — одна из причин, которая не позволяет последним покрывать большие площади и, таким образом,более полно использовать энергию солнечного света). Также органическая электроника может применяться при создании светоизлучающих устройств и органических полевых транзисторов.

Молекула, о которой идет речь, представляет собой так называемый допант (что означает «легирующая примесь»), добавление которого к полимерной основе существенно увеличивает ее электрическую проводимость. Подобные допанты для неорганических полупроводников разрабатываются уже в течение нескольких десятилетий, однако, по словам одного из соавторов статьи Дмитрия Иванова, в отношении органических проводников это направление изучено значительно скромнее. В настоящее время чаще всего применяются фторированные допанты. В сочетании с разными органическими полупроводниками они способны резко увеличивать их электрическую проводимость, однако подходят далеко не для всех полимеров, использующихся сегодня в «пластиковой» электронике.

«Вместе с коллегами из Дрездена мы решили предложить совершенно новый тип низкомолекулярного допанта для органических полупроводников, — сообщает Дмитрий Иванов. — И здесь важно было подобрать такую молекулу, чтобы она не только подходила по своим энергетическим уровням на роль допанта, но, что самое главное, важно было, чтобы допант хорошо смешивался с полимером, чтобы он при контакте с полимером не выделялся в отдельную фазу, кристаллизовавшись и, фактически, потеряв контакт с полимером».

Главный вклад лаборатории Иванова в эту работу свелся к исследованию физики фазовых превращений, физики смешивания в таких бинарных системах, иначе говоря — поиск подходящего кандидата с позиций полимерной физики.

И такой кандидат был найден. Им оказалась производная молекулы под названием [3]-радиален. Это небольшая плоская молекула, в которой атомы углерода соединены в структуру треугольной формы. Среди других потенциально интересных соединений [3]-радиален имеет самую подходящую по энергии незанятую молекулярную орбиталь с минимальной энергией. Это означает, что электроны относительно легко с нее соскакивают, становясь свободными зарядами и увеличивая проводимость материала. [3]-Радилен таким образом становится сильнейшим допантом для органических полупроводников из тех, что известны в научной литературе.

Эксперименты с радиаленом подтвердили результаты квантово-химических расчетов, показав, что вещество прекрасно смешивается с полимерами и позволяет увеличивать их электрическую проводимость в десятки и даже сотни раз. Было установлено, что вплоть до 50-процентного содержания допанта в полимере не происходит фазового расслоения, зато кристаллическая структура полимера постепенно изменяется. Это означало, что молекулы допанта встраиваются в полимерную кристаллическую решетку и формируют там так называемый со-кристалл. А образование со-кристаллов, по словам Иванова, как раз и является одной из основных причин высокой эффективности нового соединения.

«Новый допант, точно так же, как и его фторированные и на сегодня наиболее популярные аналоги, относится к разряду электрон-дефицитных органических допантов, — сообщает Дмитрий Иванов. — Фтор, как известно, сильно оттягивает электроны от центральной группы, что способствует увеличению дырочной проводимости полимера. В нашем случае химическая структура совершенно иная, и, собственно, она даже лучше. Хорошее смешение нашего допанта с полимерной матрицей представляет собой, мне кажется, залог успеха в его использовании. Это позволит создавать новые классы солнечных батарей. Мы также думаем о производстве органических полевых транзисторов. Я думаю, это даст существенный толчок в развитии электронных устройств на органической основе».

Темы: Исследования, Исследования российских и зарубежных ученых, Наука и практика, Научные исследования и открытия в России
Источник: МГУ имени М.В.Ломоносова
Расскажите об этом:
0

Подписаться на KM.RU в Telegram

Сообщить об ошибке на km.ru_new@mail.ru

Комментарии читателей Оставить комментарий

  1. 13.07.2016, 23:37
    Гость: ВВВ

    Всегда смешили сообщения о "революционных" прорывах в технологиях, которые начинались: "группа (безымянных) учёных...).

    • ответить
    • ветвь обсуждения
]]>
]]>
Выбор читателей
© KM.RU
Ситуация критическая. Через неделю платежи за газ и ЖКХ для многих будут неподъемны
Путин подписал закон о защите русского языка
Разгром Ирана: три аспекта ирано-израильской войны
Фельдшеры и акушеры смогут заменять участковых врачей
]]>
Агрегатор 24СМИ
]]>
Избранное
«ЙОРШ» вернул в 2007-й, а «Северный Флот» подготовил к «нордическому» сету «Алисы» на KKinchevFest
F.P.G, 28 апреля, «16 Тонн»
Сбербанк: бегство топ-менеджеров
Джин-Тоник «снебаупасть»
Сергей Бобунец показал, как спасти мир от одиночества
Афганцы начали наступление на Польшу
Кинопремьера «Бэби-тур»: люди ночами делают новых солдат
«ЙОРШ», 15 апреля, «Урбан»
Стоит ли покупать акции Tesla
Глобальная игра и сумерки в Приднестровье: о ситуации в республике
Кritika «Я остаюсь» (интернет-альбом)
официальный сайт © ООО «КМ онлайн», 1999-2025 О проекте ·Все проекты ·Выходные данные ·Контакты ·Реклама
]]>
]]>
Сетевое издание KM.RU. Свидетельство о регистрации Эл № ФС 77 – 41842.
Мнения авторов опубликованных материалов могут не совпадать с позицией редакции.

Мультипортал KM.RU: актуальные новости, авторские материалы, блоги и комментарии, фото- и видеорепортажи, почта, энциклопедии, погода, доллар, евро, рефераты, телепрограмма, развлечения.

Карта сайта


Подписывайтесь на наш Telegram-канал и будьте в курсе последних событий.


Организации, запрещенные на территории Российской Федерации
Telegram Logo

Используя наш cайт, Вы даете согласие на обработку файлов cookie. Если Вы не хотите, чтобы Ваши данные обрабатывались, необходимо установить специальные настройки в браузере или покинуть сайт.